REGULATORY B CELLS IN THE JEJUNAL PEYER’S PATCHES OF BOVINE AND SHEEP

Toll-like receptors (TLRs) recognize microbial components as danger signals and induce immune responses. TLR’s are expressed in many tissues of the host that are involved in immune responses including the intestines where they are abundantly expressed. This situation presents a challenge in the gast...

Full description

Bibliographic Details
Other Authors: MUTWIRI, GEORGE
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10388/ETD-2014-09-1731
id ndltd-USASK-oai-ecommons.usask.ca-10388-ETD-2014-09-1731
record_format oai_dc
collection NDLTD
language English
sources NDLTD
topic Immune regulation
regulatory cells
Bregs
Peyer’s patches
TLR9
CpG ODN
sheep
spellingShingle Immune regulation
regulatory cells
Bregs
Peyer’s patches
TLR9
CpG ODN
sheep
REGULATORY B CELLS IN THE JEJUNAL PEYER’S PATCHES OF BOVINE AND SHEEP
description Toll-like receptors (TLRs) recognize microbial components as danger signals and induce immune responses. TLR’s are expressed in many tissues of the host that are involved in immune responses including the intestines where they are abundantly expressed. This situation presents a challenge in the gastrointestinal tract which is constantly exposed to a wide variety of commensal organisms. Therefore, innate immune recognition in the intestine must be tightly regulated to prevent unwanted inflammation against harmless commensal micro-organisms and yet allow for the induction of protective immunity to invading pathogens. A dysregulation of this balance can result in intestinal inflammation. Peyer’s patches (PP) are the primary site for the induction of immune responses in the intestine and abundantly express TLRs. It is not known how PP regulate microbial signals from commensal bacteria and yet mount vigorous immune responses against dangerous pathogens. CpG DNA, an agonist for TLR9, can strongly activate immune cells in blood, lymph nodes and spleen. However, CpG very poorly activates immune cells from Peyer’s patches, although these cells express TLR9 [1, 2]. Understanding how TLR responses are regulated in PP cells will unveil important information on how immune responses are regulated in the intestine. Investigations from our laboratory have revealed a B cell population (CD5-CD11c-CD21+) in PP that spontaneously secrete high levels of IL-10 which in turn down regulates TLR9 induced IFN and IL-12 production. These IL-10-secreting PP B cells represent a novel subset of the recently proposed regulatory B cells (Bregs) in the intestine [1, 3]. Bregs may have a role in maintaining tolerance to commensal bacteria thereby achieving intestinal homeostasis. The overall goal of the work described in this thesis was to improve our understanding of the immunobiology of Bregs. We performed several experiments to achieve this goal. First, we studied the development of regulatory B cells in lambs of different ages. Jejunal PP were collected from 3-4 month old, neonatal and fetal lambs and the production of IL-10 (the immunoregulatory cytokine secreted by Bregs) was assayed. We found that IL-10 was secreted by CD21+ B cells from the PP in all the three age groups, confirming that Bregs develop prior to birth. We then wondered whether our CD21+ B cells might be contaminated with other cells or activated when using MACS to enrich B cells. To address this issue, we prepared very highly purified CD21+ B cell population using high speed cell sorting to negatively enrich for B cells. We also sorted DCs and assayed IL-10 production in both cell populations. Only the PP B cells spontaneously secreted IL-10. In contrast, dendritic cells, T cells, macrophages, neutrophils and NK cells did not secrete detectable IL-10. Since B cells exist as regulatory and effector populations in mice, we wondered whether an effector B cell population also existed in ovine PP that secreted the pro-inflammatory cytokines IFN-, IFN- and IL-12. Therefore, ovine PP B cells were fractionated into CD72+CD21+and CD72+CD21- subpopulations to assess their capacity to secrete pro-inflammatory cytokines. Interestingly, the CD72+CD21- B cell population secreted the cytokines IFN-, IFN- and IL-12 suggesting there was an effector population. We then surveyed for Bregs in different mucosal and peripheral tissues in sheep. We observed the Bregs frequency varied among the different lymphoid tissues. Finally, we investigated whether Bregs were present in PP of other ruminant species. We identified Bregs exist in PP of neonatal calves. In conclusion, our investigations reveal that ovine Bregs develop in utero prior to antigen exposure, and are present in a variety of mucosal and peripheral tissues. We also report the novel observation that two distinct B cell sub-populations are present in ovine jejunal PP’s: Regulatory and effector B cells.
author2 MUTWIRI, GEORGE
author_facet MUTWIRI, GEORGE
title REGULATORY B CELLS IN THE JEJUNAL PEYER’S PATCHES OF BOVINE AND SHEEP
title_short REGULATORY B CELLS IN THE JEJUNAL PEYER’S PATCHES OF BOVINE AND SHEEP
title_full REGULATORY B CELLS IN THE JEJUNAL PEYER’S PATCHES OF BOVINE AND SHEEP
title_fullStr REGULATORY B CELLS IN THE JEJUNAL PEYER’S PATCHES OF BOVINE AND SHEEP
title_full_unstemmed REGULATORY B CELLS IN THE JEJUNAL PEYER’S PATCHES OF BOVINE AND SHEEP
title_sort regulatory b cells in the jejunal peyer’s patches of bovine and sheep
publishDate 2015
url http://hdl.handle.net/10388/ETD-2014-09-1731
_version_ 1718111368451719168
spelling ndltd-USASK-oai-ecommons.usask.ca-10388-ETD-2014-09-17312015-10-25T04:53:54ZREGULATORY B CELLS IN THE JEJUNAL PEYER’S PATCHES OF BOVINE AND SHEEPImmune regulationregulatory cellsBregsPeyer’s patchesTLR9CpG ODNsheepToll-like receptors (TLRs) recognize microbial components as danger signals and induce immune responses. TLR’s are expressed in many tissues of the host that are involved in immune responses including the intestines where they are abundantly expressed. This situation presents a challenge in the gastrointestinal tract which is constantly exposed to a wide variety of commensal organisms. Therefore, innate immune recognition in the intestine must be tightly regulated to prevent unwanted inflammation against harmless commensal micro-organisms and yet allow for the induction of protective immunity to invading pathogens. A dysregulation of this balance can result in intestinal inflammation. Peyer’s patches (PP) are the primary site for the induction of immune responses in the intestine and abundantly express TLRs. It is not known how PP regulate microbial signals from commensal bacteria and yet mount vigorous immune responses against dangerous pathogens. CpG DNA, an agonist for TLR9, can strongly activate immune cells in blood, lymph nodes and spleen. However, CpG very poorly activates immune cells from Peyer’s patches, although these cells express TLR9 [1, 2]. Understanding how TLR responses are regulated in PP cells will unveil important information on how immune responses are regulated in the intestine. Investigations from our laboratory have revealed a B cell population (CD5-CD11c-CD21+) in PP that spontaneously secrete high levels of IL-10 which in turn down regulates TLR9 induced IFN and IL-12 production. These IL-10-secreting PP B cells represent a novel subset of the recently proposed regulatory B cells (Bregs) in the intestine [1, 3]. Bregs may have a role in maintaining tolerance to commensal bacteria thereby achieving intestinal homeostasis. The overall goal of the work described in this thesis was to improve our understanding of the immunobiology of Bregs. We performed several experiments to achieve this goal. First, we studied the development of regulatory B cells in lambs of different ages. Jejunal PP were collected from 3-4 month old, neonatal and fetal lambs and the production of IL-10 (the immunoregulatory cytokine secreted by Bregs) was assayed. We found that IL-10 was secreted by CD21+ B cells from the PP in all the three age groups, confirming that Bregs develop prior to birth. We then wondered whether our CD21+ B cells might be contaminated with other cells or activated when using MACS to enrich B cells. To address this issue, we prepared very highly purified CD21+ B cell population using high speed cell sorting to negatively enrich for B cells. We also sorted DCs and assayed IL-10 production in both cell populations. Only the PP B cells spontaneously secreted IL-10. In contrast, dendritic cells, T cells, macrophages, neutrophils and NK cells did not secrete detectable IL-10. Since B cells exist as regulatory and effector populations in mice, we wondered whether an effector B cell population also existed in ovine PP that secreted the pro-inflammatory cytokines IFN-, IFN- and IL-12. Therefore, ovine PP B cells were fractionated into CD72+CD21+and CD72+CD21- subpopulations to assess their capacity to secrete pro-inflammatory cytokines. Interestingly, the CD72+CD21- B cell population secreted the cytokines IFN-, IFN- and IL-12 suggesting there was an effector population. We then surveyed for Bregs in different mucosal and peripheral tissues in sheep. We observed the Bregs frequency varied among the different lymphoid tissues. Finally, we investigated whether Bregs were present in PP of other ruminant species. We identified Bregs exist in PP of neonatal calves. In conclusion, our investigations reveal that ovine Bregs develop in utero prior to antigen exposure, and are present in a variety of mucosal and peripheral tissues. We also report the novel observation that two distinct B cell sub-populations are present in ovine jejunal PP’s: Regulatory and effector B cells.MUTWIRI, GEORGE2015-10-24T12:01:27Z2015-10-24T12:01:27Z2014-092015-10-23September 2014textthesishttp://hdl.handle.net/10388/ETD-2014-09-1731eng