Atmospheric Production and Transport of Cosmogenic 7Be and 10Be

This thesis deals with the atmospheric distribution of the cosmogenic isotopes 7Be (half-life 53 days) and 10Be (half-life 1.51 million years) as well as the anthropogenic isotope 137Cs (half-life 30 years) in aerosols and precipitation. Samples covering continuous or selected parts of the period 19...

Full description

Bibliographic Details
Main Author: Kulan, Abdulhadi
Format: Doctoral Thesis
Language:English
Published: Uppsala universitet, Institutionen för geovetenskaper 2007
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7965
http://nbn-resolving.de/urn:isbn:978-91-554-6925-2
id ndltd-UPSALLA1-oai-DiVA.org-uu-7965
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-uu-79652013-01-08T13:04:29ZAtmospheric Production and Transport of Cosmogenic 7Be and 10BeengKulan, AbdulhadiUppsala universitet, Institutionen för geovetenskaperUppsala : Acta Universitatis Upsaliensis2007Earth sciencesAerosolsAtmosphereCosmogenic Be-7 and Be-10Cs-137CloudsSwedenEuropeGeovetenskapThis thesis deals with the atmospheric distribution of the cosmogenic isotopes 7Be (half-life 53 days) and 10Be (half-life 1.51 million years) as well as the anthropogenic isotope 137Cs (half-life 30 years) in aerosols and precipitation. Samples covering continuous or selected parts of the period 1972-2005 in Sweden and Europe are evaluated with respect to production, air mass transport and fallout processes. Such information is valuable in assessing the potential of these isotopes as indicators of air mass mixing and solar modulation factors that affect climate change. The results of 7Be and 10Be show seasonal variability and an 11-year cyclic pattern which is anti-correlated with the solar activity. Variations in seasonal trends of 7Be and 137Cs in aerosols during the post- and pre-Chernobyl period reflect tropospheric influence from 137Cs-heavily contaminated regions. A clear latitude dependence is observed in our beryllium isotope data where highest fallout is found in mid-latitudes compared to high and low latitude regions in the Northern hemisphere. This pattern reflects the general air mass circulation in the troposphere. However, stratospheric air mass influence was also identified in mainly single events and through tropopause folding during spring-summer seasons. The ratio of 10Be/7Be is used to estimate effects of air mass transport on production signal. The results show ratios between 1 and 3, much higher than the theoretically predicted value (0.6) in the atmosphere, which suggests contribution from 7Be-depleted (old) air masses. The relationship between monthly 7Be atmospheric activity and Total Fractional Cloud Cover (TFCC), collected from satellite imagery, over Sweden for the years (1991-2000) indicates a negative seasonal correlation. This observation can be related to depletion of aerosol from the atmosphere due to trapping in clouds. Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7965urn:isbn:978-91-554-6925-2Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 321application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Earth sciences
Aerosols
Atmosphere
Cosmogenic Be-7 and Be-10
Cs-137
Clouds
Sweden
Europe
Geovetenskap
spellingShingle Earth sciences
Aerosols
Atmosphere
Cosmogenic Be-7 and Be-10
Cs-137
Clouds
Sweden
Europe
Geovetenskap
Kulan, Abdulhadi
Atmospheric Production and Transport of Cosmogenic 7Be and 10Be
description This thesis deals with the atmospheric distribution of the cosmogenic isotopes 7Be (half-life 53 days) and 10Be (half-life 1.51 million years) as well as the anthropogenic isotope 137Cs (half-life 30 years) in aerosols and precipitation. Samples covering continuous or selected parts of the period 1972-2005 in Sweden and Europe are evaluated with respect to production, air mass transport and fallout processes. Such information is valuable in assessing the potential of these isotopes as indicators of air mass mixing and solar modulation factors that affect climate change. The results of 7Be and 10Be show seasonal variability and an 11-year cyclic pattern which is anti-correlated with the solar activity. Variations in seasonal trends of 7Be and 137Cs in aerosols during the post- and pre-Chernobyl period reflect tropospheric influence from 137Cs-heavily contaminated regions. A clear latitude dependence is observed in our beryllium isotope data where highest fallout is found in mid-latitudes compared to high and low latitude regions in the Northern hemisphere. This pattern reflects the general air mass circulation in the troposphere. However, stratospheric air mass influence was also identified in mainly single events and through tropopause folding during spring-summer seasons. The ratio of 10Be/7Be is used to estimate effects of air mass transport on production signal. The results show ratios between 1 and 3, much higher than the theoretically predicted value (0.6) in the atmosphere, which suggests contribution from 7Be-depleted (old) air masses. The relationship between monthly 7Be atmospheric activity and Total Fractional Cloud Cover (TFCC), collected from satellite imagery, over Sweden for the years (1991-2000) indicates a negative seasonal correlation. This observation can be related to depletion of aerosol from the atmosphere due to trapping in clouds.
author Kulan, Abdulhadi
author_facet Kulan, Abdulhadi
author_sort Kulan, Abdulhadi
title Atmospheric Production and Transport of Cosmogenic 7Be and 10Be
title_short Atmospheric Production and Transport of Cosmogenic 7Be and 10Be
title_full Atmospheric Production and Transport of Cosmogenic 7Be and 10Be
title_fullStr Atmospheric Production and Transport of Cosmogenic 7Be and 10Be
title_full_unstemmed Atmospheric Production and Transport of Cosmogenic 7Be and 10Be
title_sort atmospheric production and transport of cosmogenic 7be and 10be
publisher Uppsala universitet, Institutionen för geovetenskaper
publishDate 2007
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7965
http://nbn-resolving.de/urn:isbn:978-91-554-6925-2
work_keys_str_mv AT kulanabdulhadi atmosphericproductionandtransportofcosmogenic7beand10be
_version_ 1716508191620071424