Amyotrophic Lateral Sclerosis – A Study in Transgenic Mice

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an incidence of 1.5-2.7/100000 people/year. Today there is no cure for the disease and only symptomatic treatments are available. ALS progresses rapidly and only 50% of the patients are alive three years after the symptom...

Full description

Bibliographic Details
Main Author: Wootz, Hanna
Format: Doctoral Thesis
Language:English
Published: Uppsala universitet, Neurobiologi 2006
Subjects:
ALS
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7342
http://nbn-resolving.de/urn:isbn:91-554-6730-X
Description
Summary:Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an incidence of 1.5-2.7/100000 people/year. Today there is no cure for the disease and only symptomatic treatments are available. ALS progresses rapidly and only 50% of the patients are alive three years after the symptom debut. In ALS, the upper and lower motor neurons undergo degeneration in a process resembling apoptosis. This leads to muscle atrophy and paralysis. The causes of neuronal death are however unknown. In this thesis we have studied transgenic mice carrying human mutant superoxide dismutase, as a model for familial ALS. These mice develop ALS-like symptoms after four months of age with degeneration of the motor neurons. Our results show an involvement of endoplasmic reticulum stress, caspase-12, -9, -3 and procaspase-7 in the ALS mice spinal cord. Overexpression of the antiapoptotic protein XIAP in spinal cord neurons inhibited the activation of caspase-12 and reduced caspase-3 and calpain activity. Calpastatin, the regulator of calpain activity, was kept intact in the ALS-XIAP mice. These mice showed a 12% increase in the mean survival suggesting a beneficial effect of XIAP in ALS. The reason for the ultimate cell death of motor neurons in the ALS-XIAP mice may be due to the activation of additional cell death pathways. Thus, we observed that lysosomal proteases particularly, cathepsinB, -D, and -L were activated in the ALS mice spinal cord together with a less marked upregulation of the inhibitors, cystatinB and -C. We also found activation of astrocytes and microglial cells in the spinal cord of ALS mice indicating their involvement in the disease. The results show that both caspase-dependent and -independent pathways are activated during neuronal degeneration in the ALS spinal cord. The results obtained may help to identify novel drug targets for future treatments of ALS.