Signaling via Orexin Receptors : A Pharmacological Study
The orexin receptors are a pair of newly discovered G-protein coupled receptors which are activated by the neuropeptides orexins and play a role in sleep/vigilance, apetite/metabolism and neuroendocrine regulation. On a cellular level receptor activation results in, to name but a few effects, elevat...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Uppsala universitet, Fysiologi
2004
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4570 http://nbn-resolving.de/urn:isbn:91-554-6049-6 |
Summary: | The orexin receptors are a pair of newly discovered G-protein coupled receptors which are activated by the neuropeptides orexins and play a role in sleep/vigilance, apetite/metabolism and neuroendocrine regulation. On a cellular level receptor activation results in, to name but a few effects, elevation of intracellular calcium and depolarisation. All cellular effects display an uncommon dependence of extracellular Ca2+, which has been shown to be due to influx of extracellular Ca2+ as a primary response. Here we provide evidence for a high specificity of orexin receptors for orexin peptides over other neuropeptides, despite previous reports of the opposite. Other neuropeptides could neither displace orexin-A from orexin receptors, nor affect functional responses induced by orexin peptides via orexin receptors. In an effort to assess the determinants of orexin-A binding to orexin receptors orexin-A was truncated/mutated and tested for functional responses. It was found that alterations in the orexin-A sequence had more prominent effects on the activation of OX1 than on OX2 receptors. When the signaling of orexin receptors was investigated in neuron-like cells it was found that they couple to Ca2+-metabolism and PLC activation in a manner similar to that in non-neuronal cells. Investigations of OX1 receptor regulation of adenylyl cyclases showed orexin receptors to have a dual effect on the production of cAMP. A high-affinity inhibitory coupling and a low-affinity stimulatory coupling. The stimulatory coupling was determined to consist of two components, a low potency GS-coupling and a high-potency PKC coupling. In conclusion we have shown that orexin receptors are preferentially activated by orexin peptides and the receptors couple to Ca2+-metabolism in a similar way in different contexts. Orexin receptors couple to both the phospholipase C and the adenylyl cyclase pathway and to some extent these pathways converge in the production of cAMP. |
---|