Validation and optimization of multiplexInSitu PLA for signalling pathway analysis

With the advent of Tyrosine kinase inhibitors (TKI) as a therapy for Chronic myeloid Leukemia (CML), the patients now enjoy a life expectancy close to that of the general population. But some patients do get unresponsive to the TKI treatment over time due to several mutations in the kinase domain of...

Full description

Bibliographic Details
Main Author: Sinha, Tanay Kumar
Format: Others
Language:English
Published: Uppsala universitet, Institutionen för biologisk grundutbildning 2021
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-450392
Description
Summary:With the advent of Tyrosine kinase inhibitors (TKI) as a therapy for Chronic myeloid Leukemia (CML), the patients now enjoy a life expectancy close to that of the general population. But some patients do get unresponsive to the TKI treatment over time due to several mutations in the kinase domain of the BCR-ABL fusion protein, which further leads to activation of multiple signaling cascades within the leukemic cell, helping it survive and proliferate. This project validates and optimizes a new method of In situ PLA that incorporates the usage of different padlocks and template oligos. Multiple cross-reactivity tests and interaction assays in multiple cancer cell lines will further optimize this system as a robust multiplex protein-protein interaction detection tool. Proteins associated with the MAP-K, PI3-K, and Jak-STAT signaling pathways were the main detection targets.