Inverse Uncertainty Quantification using deterministic sampling : An intercomparison between different IUQ methods
In this thesis, two novel methods for Inverse Uncertainty Quantification are benchmarked against the more established methods of Monte Carlo sampling of output parameters(MC) and Maximum Likelihood Estimation (MLE). Inverse Uncertainty Quantification (IUQ) is the process of how to best estimate the...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Uppsala universitet, Tillämpad kärnfysik
2021
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447070 |
id |
ndltd-UPSALLA1-oai-DiVA.org-uu-447070 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-uu-4470702021-06-25T05:37:14ZInverse Uncertainty Quantification using deterministic sampling : An intercomparison between different IUQ methodsengAndersson, HjalmarUppsala universitet, Tillämpad kärnfysik2021Inverse Uncertainty QuantificationModel calibrationUnscented transformDeterministic samplingEngineering and TechnologyTeknik och teknologierProbability Theory and StatisticsSannolikhetsteori och statistikIn this thesis, two novel methods for Inverse Uncertainty Quantification are benchmarked against the more established methods of Monte Carlo sampling of output parameters(MC) and Maximum Likelihood Estimation (MLE). Inverse Uncertainty Quantification (IUQ) is the process of how to best estimate the values of the input parameters in a simulation, and the uncertainty of said estimation, given a measurement of the output parameters. The two new methods are Deterministic Sampling (DS) and Weight Fixing (WF). Deterministic sampling uses a set of sampled points such that the set of points has the same statistic as the output. For each point, the corresponding point of the input is found to be able to calculate the statistics of the input. Weight fixing uses random samples from the rough region around the input to create a linear problem that involves finding the right weights so that the output has the right statistic. The benchmarking between the four methods shows that both DS and WF are comparably accurate to both MC and MLE in most cases tested in this thesis. It was also found that both DS and WF uses approximately the same amount of function calls as MLE and all three methods use a lot fewer function calls to the simulation than MC. It was discovered that WF is not always able to find a solution. This is probably because the methods used for WF are not the optimal method for what they are supposed to do. Finding more optimal methods for WF is something that could be investigated further. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447070UPTEC F, 1401-5757 ; 21044application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Inverse Uncertainty Quantification Model calibration Unscented transform Deterministic sampling Engineering and Technology Teknik och teknologier Probability Theory and Statistics Sannolikhetsteori och statistik |
spellingShingle |
Inverse Uncertainty Quantification Model calibration Unscented transform Deterministic sampling Engineering and Technology Teknik och teknologier Probability Theory and Statistics Sannolikhetsteori och statistik Andersson, Hjalmar Inverse Uncertainty Quantification using deterministic sampling : An intercomparison between different IUQ methods |
description |
In this thesis, two novel methods for Inverse Uncertainty Quantification are benchmarked against the more established methods of Monte Carlo sampling of output parameters(MC) and Maximum Likelihood Estimation (MLE). Inverse Uncertainty Quantification (IUQ) is the process of how to best estimate the values of the input parameters in a simulation, and the uncertainty of said estimation, given a measurement of the output parameters. The two new methods are Deterministic Sampling (DS) and Weight Fixing (WF). Deterministic sampling uses a set of sampled points such that the set of points has the same statistic as the output. For each point, the corresponding point of the input is found to be able to calculate the statistics of the input. Weight fixing uses random samples from the rough region around the input to create a linear problem that involves finding the right weights so that the output has the right statistic. The benchmarking between the four methods shows that both DS and WF are comparably accurate to both MC and MLE in most cases tested in this thesis. It was also found that both DS and WF uses approximately the same amount of function calls as MLE and all three methods use a lot fewer function calls to the simulation than MC. It was discovered that WF is not always able to find a solution. This is probably because the methods used for WF are not the optimal method for what they are supposed to do. Finding more optimal methods for WF is something that could be investigated further. |
author |
Andersson, Hjalmar |
author_facet |
Andersson, Hjalmar |
author_sort |
Andersson, Hjalmar |
title |
Inverse Uncertainty Quantification using deterministic sampling : An intercomparison between different IUQ methods |
title_short |
Inverse Uncertainty Quantification using deterministic sampling : An intercomparison between different IUQ methods |
title_full |
Inverse Uncertainty Quantification using deterministic sampling : An intercomparison between different IUQ methods |
title_fullStr |
Inverse Uncertainty Quantification using deterministic sampling : An intercomparison between different IUQ methods |
title_full_unstemmed |
Inverse Uncertainty Quantification using deterministic sampling : An intercomparison between different IUQ methods |
title_sort |
inverse uncertainty quantification using deterministic sampling : an intercomparison between different iuq methods |
publisher |
Uppsala universitet, Tillämpad kärnfysik |
publishDate |
2021 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447070 |
work_keys_str_mv |
AT anderssonhjalmar inverseuncertaintyquantificationusingdeterministicsamplinganintercomparisonbetweendifferentiuqmethods |
_version_ |
1719412790153707520 |