Implementation of Variational Autoencoder on the simulated particle collider data
We study the possibility of applying deep learning algorithms, suchas Variational Autoencoders, on simulated particle collider data to detectBeyond the Standard Model events. In this report, we apply three dif-ferent processes of training the data for better eciency and the resultsof said training o...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Uppsala universitet, Högenergifysik
2021
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-435325 |
id |
ndltd-UPSALLA1-oai-DiVA.org-uu-435325 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-uu-4353252021-03-02T05:28:08ZImplementation of Variational Autoencoder on the simulated particle collider dataengAlves Cardoso, MárioUppsala universitet, Högenergifysik2021high energy physicsmachine learningPhysical SciencesFysikWe study the possibility of applying deep learning algorithms, suchas Variational Autoencoders, on simulated particle collider data to detectBeyond the Standard Model events. In this report, we apply three dif-ferent processes of training the data for better eciency and the resultsof said training on detecting anomalies. Links to the training and testingdata can be found here: https://www.phenomldata.org/ Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-435325FYSAST ; FYSPROJ1210application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
high energy physics machine learning Physical Sciences Fysik |
spellingShingle |
high energy physics machine learning Physical Sciences Fysik Alves Cardoso, Mário Implementation of Variational Autoencoder on the simulated particle collider data |
description |
We study the possibility of applying deep learning algorithms, suchas Variational Autoencoders, on simulated particle collider data to detectBeyond the Standard Model events. In this report, we apply three dif-ferent processes of training the data for better eciency and the resultsof said training on detecting anomalies. Links to the training and testingdata can be found here: https://www.phenomldata.org/ |
author |
Alves Cardoso, Mário |
author_facet |
Alves Cardoso, Mário |
author_sort |
Alves Cardoso, Mário |
title |
Implementation of Variational Autoencoder on the simulated particle collider data |
title_short |
Implementation of Variational Autoencoder on the simulated particle collider data |
title_full |
Implementation of Variational Autoencoder on the simulated particle collider data |
title_fullStr |
Implementation of Variational Autoencoder on the simulated particle collider data |
title_full_unstemmed |
Implementation of Variational Autoencoder on the simulated particle collider data |
title_sort |
implementation of variational autoencoder on the simulated particle collider data |
publisher |
Uppsala universitet, Högenergifysik |
publishDate |
2021 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-435325 |
work_keys_str_mv |
AT alvescardosomario implementationofvariationalautoencoderonthesimulatedparticlecolliderdata |
_version_ |
1719382328623497216 |