Image Augmentation to Create Lower Quality Images for Training a YOLOv4 Object Detection Model
Research in the Arctic is of ever growing importance, and modern technology is used in news ways to map and understand this very complex region and how it is effected by climate change. Here, animals and vegetation are tightly coupled with their environment in a fragile ecosystem, and when the envir...
Main Author: | Melcherson, Tim |
---|---|
Format: | Others |
Language: | English |
Published: |
Uppsala universitet, Signaler och system
2020
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429146 |
Similar Items
-
Jämförelse av evolution och samevolution för att evaluera speltillstånd : I artificiella neurala nätverk kombinerat med minimax
by: Torstensson, Robbin
Published: (2015) -
SAMEVOLUTION AV ARTIFICIELLTNEURALT NÄTVERK FÖR ATTEVALUERA SPELTILLSTÅND
by: Norberg, David
Published: (2014) -
SAMEVOLUTION AV ARTIFICIELLT NEURALT NÄTVERK FÖR ATT EVALUERA SPELTILLSTÅND
by: Norberg, David
Published: (2014) -
Deep Learning for Detecting and Classifying Ocean Objects: Application of YoloV3 for Iceberg–Ship Discrimination
by: Frederik Seerup Hass, et al.
Published: (2020-12-01) -
Real Time Pear Fruit Detection and Counting Using YOLOv4 Models and Deep SORT
by: Addie Ira Borja Parico, et al.
Published: (2021-07-01)