A search for a prompt atmospheric muon neutrino flux in the northern hemisphere using data releases from IceCube

The IceCube Neutrino Observatory is a cubic kilometre scale detector for high-energy neutrinos above hundreds of GeV produced in Earth’s atmosphere as well as outside our solar system whenever particles are accelerated to ultra-relativistic energies. The prompt atmospheric contribution is a result o...

Full description

Bibliographic Details
Main Author: Haberland, Marcus
Format: Others
Language:English
Published: Uppsala universitet, Högenergifysik 2020
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415984
Description
Summary:The IceCube Neutrino Observatory is a cubic kilometre scale detector for high-energy neutrinos above hundreds of GeV produced in Earth’s atmosphere as well as outside our solar system whenever particles are accelerated to ultra-relativistic energies. The prompt atmospheric contribution is a result of the creation of heavy mesons with charm components in the atmosphere. Past studies from IceCube using a maximum likelihood estimation over the whole neutrino energy spectrum always reported a best-fit zero prompt contribution so far [1–5], contrary to theory [6, 7]. In this analysis we tried to measure this prompt atmospheric flux in muon neutrino event data from different IceCube releases. In contrast to past studies we performed a binned least-squares fit of the conventional atmospheric flux from data at low energies and subtracted this fit and an astrophysical flux reported by IceCube to measure a prompt contribution. Due to a lack of statistics and accessible information from data releases, our results are also compatible with a zero prompt contribution.