Utvärdering av ventilationsflöde och luftkvalitet i bostadsgarage : En mätstudie och utformning av ett verktyg för framtida projekt

Parking garages are often ventilated in accordance with SBN minimum requirements, which specify an extract air flow rate of 0.9 l/s, m2 for residential parking garages and 1.8 l/s, m2 for public parking garages. It has recently been observed that fan units in many cases are overdimensioned and as a...

Full description

Bibliographic Details
Main Author: Andersson, Frida
Format: Others
Language:Swedish
Published: 2020
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413783
Description
Summary:Parking garages are often ventilated in accordance with SBN minimum requirements, which specify an extract air flow rate of 0.9 l/s, m2 for residential parking garages and 1.8 l/s, m2 for public parking garages. It has recently been observed that fan units in many cases are overdimensioned and as a result often operate at low flow rates and rarely need to operate at full capacity. Oversized air handling systems create an excessively high demand for energy which raises overall operation costs. The aim of this master’s thesis is to investigate if the air flow in residential parking garages can be reduced while avoiding excess levels of pollution and maintaining an acceptable building moisture level. Furthermore, an excel macro was created in order to facilitate a more streamlined approach for future projects. The function of the macro was to simplify the process of determining the dimensions of ventilationsystems. Two residential parking garages with different types of air handling units were compared by measuring pollution contents in the air as well as extract air flow rate. Additionally, simulations were carried out for three different scenarios where the air flow was varied. The purpose of the simulations was to examine the energy-saving benefits of lower airflows compared to the current ventilation flow rate. Based on measurement data and simulations it can be concluded that the exhaust air flow for the investigated parking garages can be reduced to 0.2 l / s, m2 without reaching excess levels of pollution or allowing unacceptable moisture levels to develop. However, it is important that the air handling unit can operate at higher air flows in order to vent temporarily high peak concentrations. Furthermore, it should be noted that the pollution levels were consistently kept low and only a few peak concentrations were registered. This was to some extent not an unexpected result. High peak concentrations can be registered in a misrepresentative fashion. For example, if a car starts near the gas sensor it can cause a high peak concentration to be registered. Upon validation of the excel macro used, it is clear that the results correspond well with the above-mentioned measurements. Further studies can be done however, in order to obtain even more conclusive results.