Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen

This thesis considers the problem of churn within the electricity distribution sector. More specifically, this study evaluates how supervised machine learning can be used by a Swedish electricity distributor in order to identify customer churn. The data was by provided by the electricity distributor...

Full description

Bibliographic Details
Main Authors: Lerdell, André, Shadman, Simon
Format: Others
Language:Swedish
Published: Uppsala universitet, Avdelningen för systemteknik 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-376295
id ndltd-UPSALLA1-oai-DiVA.org-uu-376295
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-uu-3762952019-02-07T05:47:35ZMaskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchensweMachine learning for customer analysis : Predicting customer churn in the electricity distribution sectorLerdell, AndréShadman, SimonUppsala universitet, Avdelningen för systemteknikUppsala universitet, Avdelningen för systemteknik2019maskininlärningklassificeringchurnOther Computer and Information ScienceAnnan data- och informationsvetenskapThis thesis considers the problem of churn within the electricity distribution sector. More specifically, this study evaluates how supervised machine learning can be used by a Swedish electricity distributor in order to identify customer churn. The data was by provided by the electricity distributor and covered personal, geographical and contract specific information regarding the company’s customers. The provided data was complemented with external data covering the customers’ financial positions. Based on this information the possibility to predict customer churn over a three-month period with a gradient boosted decision tree was evaluated. The results from the proposed models suggests that the possibility to identify customer churn is rather poor and could not be used in a practice. This is believed to be a result of unbalanced class distributions and that the data provided simply is not informative enough to accurately predict customer churn. If more information about the customers is collected, with predictive analyses in mind, the performance of the model is likely to increase. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-376295UPTEC STS, 1650-8319 ; 19004application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language Swedish
format Others
sources NDLTD
topic maskininlärning
klassificering
churn
Other Computer and Information Science
Annan data- och informationsvetenskap
spellingShingle maskininlärning
klassificering
churn
Other Computer and Information Science
Annan data- och informationsvetenskap
Lerdell, André
Shadman, Simon
Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen
description This thesis considers the problem of churn within the electricity distribution sector. More specifically, this study evaluates how supervised machine learning can be used by a Swedish electricity distributor in order to identify customer churn. The data was by provided by the electricity distributor and covered personal, geographical and contract specific information regarding the company’s customers. The provided data was complemented with external data covering the customers’ financial positions. Based on this information the possibility to predict customer churn over a three-month period with a gradient boosted decision tree was evaluated. The results from the proposed models suggests that the possibility to identify customer churn is rather poor and could not be used in a practice. This is believed to be a result of unbalanced class distributions and that the data provided simply is not informative enough to accurately predict customer churn. If more information about the customers is collected, with predictive analyses in mind, the performance of the model is likely to increase.
author Lerdell, André
Shadman, Simon
author_facet Lerdell, André
Shadman, Simon
author_sort Lerdell, André
title Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen
title_short Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen
title_full Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen
title_fullStr Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen
title_full_unstemmed Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen
title_sort maskininlärning inom kundanalys : prediktion av kundbeteende inom energibranchen
publisher Uppsala universitet, Avdelningen för systemteknik
publishDate 2019
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-376295
work_keys_str_mv AT lerdellandre maskininlarninginomkundanalysprediktionavkundbeteendeinomenergibranchen
AT shadmansimon maskininlarninginomkundanalysprediktionavkundbeteendeinomenergibranchen
AT lerdellandre machinelearningforcustomeranalysispredictingcustomerchurnintheelectricitydistributionsector
AT shadmansimon machinelearningforcustomeranalysispredictingcustomerchurnintheelectricitydistributionsector
_version_ 1718974891334565888