Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen
This thesis considers the problem of churn within the electricity distribution sector. More specifically, this study evaluates how supervised machine learning can be used by a Swedish electricity distributor in order to identify customer churn. The data was by provided by the electricity distributor...
Main Authors: | , |
---|---|
Format: | Others |
Language: | Swedish |
Published: |
Uppsala universitet, Avdelningen för systemteknik
2019
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-376295 |
id |
ndltd-UPSALLA1-oai-DiVA.org-uu-376295 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-uu-3762952019-02-07T05:47:35ZMaskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchensweMachine learning for customer analysis : Predicting customer churn in the electricity distribution sectorLerdell, AndréShadman, SimonUppsala universitet, Avdelningen för systemteknikUppsala universitet, Avdelningen för systemteknik2019maskininlärningklassificeringchurnOther Computer and Information ScienceAnnan data- och informationsvetenskapThis thesis considers the problem of churn within the electricity distribution sector. More specifically, this study evaluates how supervised machine learning can be used by a Swedish electricity distributor in order to identify customer churn. The data was by provided by the electricity distributor and covered personal, geographical and contract specific information regarding the company’s customers. The provided data was complemented with external data covering the customers’ financial positions. Based on this information the possibility to predict customer churn over a three-month period with a gradient boosted decision tree was evaluated. The results from the proposed models suggests that the possibility to identify customer churn is rather poor and could not be used in a practice. This is believed to be a result of unbalanced class distributions and that the data provided simply is not informative enough to accurately predict customer churn. If more information about the customers is collected, with predictive analyses in mind, the performance of the model is likely to increase. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-376295UPTEC STS, 1650-8319 ; 19004application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
Swedish |
format |
Others
|
sources |
NDLTD |
topic |
maskininlärning klassificering churn Other Computer and Information Science Annan data- och informationsvetenskap |
spellingShingle |
maskininlärning klassificering churn Other Computer and Information Science Annan data- och informationsvetenskap Lerdell, André Shadman, Simon Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen |
description |
This thesis considers the problem of churn within the electricity distribution sector. More specifically, this study evaluates how supervised machine learning can be used by a Swedish electricity distributor in order to identify customer churn. The data was by provided by the electricity distributor and covered personal, geographical and contract specific information regarding the company’s customers. The provided data was complemented with external data covering the customers’ financial positions. Based on this information the possibility to predict customer churn over a three-month period with a gradient boosted decision tree was evaluated. The results from the proposed models suggests that the possibility to identify customer churn is rather poor and could not be used in a practice. This is believed to be a result of unbalanced class distributions and that the data provided simply is not informative enough to accurately predict customer churn. If more information about the customers is collected, with predictive analyses in mind, the performance of the model is likely to increase. |
author |
Lerdell, André Shadman, Simon |
author_facet |
Lerdell, André Shadman, Simon |
author_sort |
Lerdell, André |
title |
Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen |
title_short |
Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen |
title_full |
Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen |
title_fullStr |
Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen |
title_full_unstemmed |
Maskininlärning inom kundanalys : Prediktion av kundbeteende inom energibranchen |
title_sort |
maskininlärning inom kundanalys : prediktion av kundbeteende inom energibranchen |
publisher |
Uppsala universitet, Avdelningen för systemteknik |
publishDate |
2019 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-376295 |
work_keys_str_mv |
AT lerdellandre maskininlarninginomkundanalysprediktionavkundbeteendeinomenergibranchen AT shadmansimon maskininlarninginomkundanalysprediktionavkundbeteendeinomenergibranchen AT lerdellandre machinelearningforcustomeranalysispredictingcustomerchurnintheelectricitydistributionsector AT shadmansimon machinelearningforcustomeranalysispredictingcustomerchurnintheelectricitydistributionsector |
_version_ |
1718974891334565888 |