Developing a Combinatorial Synthesis Database Tool

Thin-film solar cell research is central to the electricity production of the near future. Photovoltaic technologies based on silicon have a significant portion of the global market and installed capacity. Thin-film solar cells are port of the emerging photovoltaic technologies that are challenging...

Full description

Bibliographic Details
Main Author: Quaglia Casal, Luciano
Format: Others
Language:English
Published: Uppsala universitet, Fasta tillståndets elektronik 2018
Subjects:
PV
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-374858
Description
Summary:Thin-film solar cell research is central to the electricity production of the near future. Photovoltaic technologies based on silicon have a significant portion of the global market and installed capacity. Thin-film solar cells are port of the emerging photovoltaic technologies that are challenging silicon for a part of the electricity production based on solar power. These thin-film technologies, such as copper indium gallium selenide (CIGS) and cadmium telluride (CdTe), are lower cost and require less energy to produce, but also require rare materials. An alternative to these technologies are thin-film solar cells based on more abundant materials. To develop these new materials at Uppsala University, combinatorial synthesis is used. This method produces a significant amount of data across different measurement methods. The data needs to be analysed and combined to gather information about the characteristics of the materials being developed. To facilitate the analysis and combination of data, a database tool was created in MATLAB. The result is a program that allows its User to combine energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy and Photoluminescence spectroscopy measurements done on solar cell absorber layers. Absorber layers are the section of solar cells where sun lighet is absorbed, and electron-hole pairs are created. The program provides multiple figures and graphs combining the different data collected, enabling the User to draw conclusions about the characteristics of the sample and its suitability as an absorber layer. The combinatorial synthesis database tool created could be user for combinatorial synthesis analysis of other material samples that are not necessarily absorber layers for thin-film solar cells. This report describes both the development of the tool and the code itself.