Utveckling av beräkningsmodell för värmepumpstillsats i avfuktarsystem

One way to make a dehumidifier system more energy efficient is to attach a heat pump onto the dehumidifier. In this master thesis, a MATLAB-based computational model is developed to simulate the heat pump application. The aim for this model is to optimize various configurations of the heat pump, and...

Full description

Bibliographic Details
Main Author: Björklund, Markus
Format: Others
Language:Swedish
Published: Uppsala universitet, Institutionen för fysik och astronomi 2018
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355156
id ndltd-UPSALLA1-oai-DiVA.org-uu-355156
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-uu-3551562018-06-28T05:29:15ZUtveckling av beräkningsmodell för värmepumpstillsats i avfuktarsystemsweBjörklund, MarkusUppsala universitet, Institutionen för fysik och astronomi2018VärmepumpEnergieffektiviseringAvfuktareBeräkningsmodellEnergy EngineeringEnergiteknikOne way to make a dehumidifier system more energy efficient is to attach a heat pump onto the dehumidifier. In this master thesis, a MATLAB-based computational model is developed to simulate the heat pump application. The aim for this model is to optimize various configurations of the heat pump, and to be used as a tool in theproduct development process. The computational model should also verify the measurements that have been made on the prototype for the heat pump application. The heat pump application is mathematically described by a set of equations. Together with a set of unknown model parameters, this creates an equation system. Theequation system is then solved numerically with Newton's method in multiple variables. The validation of the calculation model shows relatively small model errors between simulated and measured data. The exception is the model error of the condensing temperature of the refrigerant, where the model error is more than twice as big as the error in other simulated temperatures. This may be due to extrapolating of curve fitted data in order to calculate the total efficiency of the compressor. Another method to calculate the total efficiency of the compressor should therefore be considered in order to reduce the model error of the condensing temperature of the refrigerant. Simulations of the model also show that choosing the refrigerant R134a over R1234yf increases the heat pump coefficient of performance (COP) by an average of 12 %. The results have also shown that heat exchangers with 3 tube rows instead of 2 gives the heat pump an increased COP. This result could be utilized tocompensate for the reduced COP when R1234yf is the refrigerant of choice. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355156UPTEC ES, 1650-8300 ; 18 031application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language Swedish
format Others
sources NDLTD
topic Värmepump
Energieffektivisering
Avfuktare
Beräkningsmodell
Energy Engineering
Energiteknik
spellingShingle Värmepump
Energieffektivisering
Avfuktare
Beräkningsmodell
Energy Engineering
Energiteknik
Björklund, Markus
Utveckling av beräkningsmodell för värmepumpstillsats i avfuktarsystem
description One way to make a dehumidifier system more energy efficient is to attach a heat pump onto the dehumidifier. In this master thesis, a MATLAB-based computational model is developed to simulate the heat pump application. The aim for this model is to optimize various configurations of the heat pump, and to be used as a tool in theproduct development process. The computational model should also verify the measurements that have been made on the prototype for the heat pump application. The heat pump application is mathematically described by a set of equations. Together with a set of unknown model parameters, this creates an equation system. Theequation system is then solved numerically with Newton's method in multiple variables. The validation of the calculation model shows relatively small model errors between simulated and measured data. The exception is the model error of the condensing temperature of the refrigerant, where the model error is more than twice as big as the error in other simulated temperatures. This may be due to extrapolating of curve fitted data in order to calculate the total efficiency of the compressor. Another method to calculate the total efficiency of the compressor should therefore be considered in order to reduce the model error of the condensing temperature of the refrigerant. Simulations of the model also show that choosing the refrigerant R134a over R1234yf increases the heat pump coefficient of performance (COP) by an average of 12 %. The results have also shown that heat exchangers with 3 tube rows instead of 2 gives the heat pump an increased COP. This result could be utilized tocompensate for the reduced COP when R1234yf is the refrigerant of choice.
author Björklund, Markus
author_facet Björklund, Markus
author_sort Björklund, Markus
title Utveckling av beräkningsmodell för värmepumpstillsats i avfuktarsystem
title_short Utveckling av beräkningsmodell för värmepumpstillsats i avfuktarsystem
title_full Utveckling av beräkningsmodell för värmepumpstillsats i avfuktarsystem
title_fullStr Utveckling av beräkningsmodell för värmepumpstillsats i avfuktarsystem
title_full_unstemmed Utveckling av beräkningsmodell för värmepumpstillsats i avfuktarsystem
title_sort utveckling av beräkningsmodell för värmepumpstillsats i avfuktarsystem
publisher Uppsala universitet, Institutionen för fysik och astronomi
publishDate 2018
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355156
work_keys_str_mv AT bjorklundmarkus utvecklingavberakningsmodellforvarmepumpstillsatsiavfuktarsystem
_version_ 1718708317810851840