Improved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug Development
Pharmacometric model-based analysis using nonlinear mixed-effects models (NLMEM) has to date mainly been applied to learning activities in drug development. However, such analyses can also serve as the primary analysis in confirmatory studies, which is expected to bring higher power than traditional...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Uppsala universitet, Institutionen för farmaceutisk biovetenskap
2016
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305697 http://nbn-resolving.de/urn:isbn:978-91-554-9734-7 |
id |
ndltd-UPSALLA1-oai-DiVA.org-uu-305697 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-uu-3056972016-11-29T05:58:21ZImproved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug DevelopmentengDosne, Anne-GaëlleUppsala universitet, Institutionen för farmaceutisk biovetenskapUppsala2016pharmacometricsnonlinear mixed-effects modelsconfirmatory trialsresidual error modelingparameter uncertaintysampling importance resamplingmodel-averagingPharmacometric model-based analysis using nonlinear mixed-effects models (NLMEM) has to date mainly been applied to learning activities in drug development. However, such analyses can also serve as the primary analysis in confirmatory studies, which is expected to bring higher power than traditional analysis methods, among other advantages. Because of the high expertise in designing and interpreting confirmatory studies with other types of analyses and because of a number of unresolved uncertainties regarding the magnitude of potential gains and risks, pharmacometric analyses are traditionally not used as primary analysis in confirmatory trials. The aim of this thesis was to address current hurdles hampering the use of pharmacometric model-based analysis in confirmatory settings by developing strategies to increase model compliance to distributional assumptions regarding the residual error, to improve the quantification of parameter uncertainty and to enable model prespecification. A dynamic transform-both-sides approach capable of handling skewed and/or heteroscedastic residuals and a t-distribution approach allowing for symmetric heavy tails were developed and proved relevant tools to increase model compliance to distributional assumptions regarding the residual error. A diagnostic capable of assessing the appropriateness of parameter uncertainty distributions was developed, showing that currently used uncertainty methods such as bootstrap have limitations for NLMEM. A method based on sampling importance resampling (SIR) was thus proposed, which could provide parameter uncertainty in many situations where other methods fail such as with small datasets, highly nonlinear models or meta-analysis. SIR was successfully applied to predict the uncertainty in human plasma concentrations for the antibiotic colistin and its prodrug colistin methanesulfonate based on an interspecies whole-body physiologically based pharmacokinetic model. Lastly, strategies based on model-averaging were proposed to enable full model prespecification and proved to be valid alternatives to standard methodologies for studies assessing the QT prolongation potential of a drug and for phase III trials in rheumatoid arthritis. In conclusion, improved methods for handling residual error, parameter uncertainty and model uncertainty in NLMEM were successfully developed. As confirmatory trials are among the most demanding in terms of patient-participation, cost and time in drug development, allowing (some of) these trials to be analyzed with pharmacometric model-based methods will help improve the safety and efficiency of drug development. Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305697urn:isbn:978-91-554-9734-7Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 1651-6192 ; 223application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
pharmacometrics nonlinear mixed-effects models confirmatory trials residual error modeling parameter uncertainty sampling importance resampling model-averaging |
spellingShingle |
pharmacometrics nonlinear mixed-effects models confirmatory trials residual error modeling parameter uncertainty sampling importance resampling model-averaging Dosne, Anne-Gaëlle Improved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug Development |
description |
Pharmacometric model-based analysis using nonlinear mixed-effects models (NLMEM) has to date mainly been applied to learning activities in drug development. However, such analyses can also serve as the primary analysis in confirmatory studies, which is expected to bring higher power than traditional analysis methods, among other advantages. Because of the high expertise in designing and interpreting confirmatory studies with other types of analyses and because of a number of unresolved uncertainties regarding the magnitude of potential gains and risks, pharmacometric analyses are traditionally not used as primary analysis in confirmatory trials. The aim of this thesis was to address current hurdles hampering the use of pharmacometric model-based analysis in confirmatory settings by developing strategies to increase model compliance to distributional assumptions regarding the residual error, to improve the quantification of parameter uncertainty and to enable model prespecification. A dynamic transform-both-sides approach capable of handling skewed and/or heteroscedastic residuals and a t-distribution approach allowing for symmetric heavy tails were developed and proved relevant tools to increase model compliance to distributional assumptions regarding the residual error. A diagnostic capable of assessing the appropriateness of parameter uncertainty distributions was developed, showing that currently used uncertainty methods such as bootstrap have limitations for NLMEM. A method based on sampling importance resampling (SIR) was thus proposed, which could provide parameter uncertainty in many situations where other methods fail such as with small datasets, highly nonlinear models or meta-analysis. SIR was successfully applied to predict the uncertainty in human plasma concentrations for the antibiotic colistin and its prodrug colistin methanesulfonate based on an interspecies whole-body physiologically based pharmacokinetic model. Lastly, strategies based on model-averaging were proposed to enable full model prespecification and proved to be valid alternatives to standard methodologies for studies assessing the QT prolongation potential of a drug and for phase III trials in rheumatoid arthritis. In conclusion, improved methods for handling residual error, parameter uncertainty and model uncertainty in NLMEM were successfully developed. As confirmatory trials are among the most demanding in terms of patient-participation, cost and time in drug development, allowing (some of) these trials to be analyzed with pharmacometric model-based methods will help improve the safety and efficiency of drug development. |
author |
Dosne, Anne-Gaëlle |
author_facet |
Dosne, Anne-Gaëlle |
author_sort |
Dosne, Anne-Gaëlle |
title |
Improved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug Development |
title_short |
Improved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug Development |
title_full |
Improved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug Development |
title_fullStr |
Improved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug Development |
title_full_unstemmed |
Improved Methods for Pharmacometric Model-Based Decision-Making in Clinical Drug Development |
title_sort |
improved methods for pharmacometric model-based decision-making in clinical drug development |
publisher |
Uppsala universitet, Institutionen för farmaceutisk biovetenskap |
publishDate |
2016 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-305697 http://nbn-resolving.de/urn:isbn:978-91-554-9734-7 |
work_keys_str_mv |
AT dosneannegaelle improvedmethodsforpharmacometricmodelbaseddecisionmakinginclinicaldrugdevelopment |
_version_ |
1718398537664823296 |