Inflow generation for scale-resolving simulations of turbulent boundary layers

Generating inflow fields for scale-resolving simulations of turbulent flow is crucial for a wide range of applications and is an active area of research. In this thesis, a method for inflow generation employing a precursor turbulent channel flow simulation is proposed. A procedure for determining th...

Full description

Bibliographic Details
Main Author: Mukha, Timofey
Format: Others
Language:English
Published: Uppsala universitet, Avdelningen för beräkningsvetenskap 2016
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-302808
id ndltd-UPSALLA1-oai-DiVA.org-uu-302808
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-uu-3028082016-09-10T05:49:52ZInflow generation for scale-resolving simulations of turbulent boundary layersengMukha, TimofeyUppsala universitet, Avdelningen för beräkningsvetenskapUppsala universitet, Numerisk analys2016Generating inflow fields for scale-resolving simulations of turbulent flow is crucial for a wide range of applications and is an active area of research. In this thesis, a method for inflow generation employing a precursor turbulent channel flow simulation is proposed. A procedure for determining the parameters of the precursor simulation based on the properties of the inflow is given. To evaluate the performance of the method, results from a simulation of a flat-plate zero-pressure-gradient turbulent boundary layer are analysed. The adaption length is quantified in terms of the development of integral quantities and the statistical moments of the velocity field. The performance is also compared with that of a state-of-the-art rescaling method for the generation of inflow data. It is shown that both approaches result in adaption lengths of comparable sizes, which makes the proposed method an attractive alternative due to its conceptual simplicity and robustness. As part of the work on inflow generation, a Python package, eddylicious, was developed. The purpose of the package is to be a framework within which various generation methods can be implemented. The package is available online under an open-source license. An overview of the architecture and currently implemented functionality of the package is given in this thesis. Furthermore, the results of a preparatory study on large-eddy simulation of wall-bounded turbulent flows are discussed. Fully-developed turbulent channel flow is used as a model problem, and the general-purpose computational fluid dynamics solver OpenFOAM is employed. The accuracy of the results with respect to the resolution of the computational mesh is analysed. Several modelling approaches for the subgrid scale stresses are considered. Licentiate thesis, comprehensive summaryinfo:eu-repo/semantics/masterThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-302808IT licentiate theses / Uppsala University, Department of Information Technology, 1404-5117 ; 2016-009application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
description Generating inflow fields for scale-resolving simulations of turbulent flow is crucial for a wide range of applications and is an active area of research. In this thesis, a method for inflow generation employing a precursor turbulent channel flow simulation is proposed. A procedure for determining the parameters of the precursor simulation based on the properties of the inflow is given. To evaluate the performance of the method, results from a simulation of a flat-plate zero-pressure-gradient turbulent boundary layer are analysed. The adaption length is quantified in terms of the development of integral quantities and the statistical moments of the velocity field. The performance is also compared with that of a state-of-the-art rescaling method for the generation of inflow data. It is shown that both approaches result in adaption lengths of comparable sizes, which makes the proposed method an attractive alternative due to its conceptual simplicity and robustness. As part of the work on inflow generation, a Python package, eddylicious, was developed. The purpose of the package is to be a framework within which various generation methods can be implemented. The package is available online under an open-source license. An overview of the architecture and currently implemented functionality of the package is given in this thesis. Furthermore, the results of a preparatory study on large-eddy simulation of wall-bounded turbulent flows are discussed. Fully-developed turbulent channel flow is used as a model problem, and the general-purpose computational fluid dynamics solver OpenFOAM is employed. The accuracy of the results with respect to the resolution of the computational mesh is analysed. Several modelling approaches for the subgrid scale stresses are considered.
author Mukha, Timofey
spellingShingle Mukha, Timofey
Inflow generation for scale-resolving simulations of turbulent boundary layers
author_facet Mukha, Timofey
author_sort Mukha, Timofey
title Inflow generation for scale-resolving simulations of turbulent boundary layers
title_short Inflow generation for scale-resolving simulations of turbulent boundary layers
title_full Inflow generation for scale-resolving simulations of turbulent boundary layers
title_fullStr Inflow generation for scale-resolving simulations of turbulent boundary layers
title_full_unstemmed Inflow generation for scale-resolving simulations of turbulent boundary layers
title_sort inflow generation for scale-resolving simulations of turbulent boundary layers
publisher Uppsala universitet, Avdelningen för beräkningsvetenskap
publishDate 2016
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-302808
work_keys_str_mv AT mukhatimofey inflowgenerationforscaleresolvingsimulationsofturbulentboundarylayers
_version_ 1718383374206238720