Studies of Enterovirus Infection and Induction of Innate Immunity in Human Pancreatic Cells
Several epidemiological and clinical studies have indicated a possible role of Enterovirus (EV) infection in type 1 diabetes (T1D) development. However, the exact casual mechanism of these viruses in T1D development is not known. The aim of this thesis is to study various EVs that have been shown to...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Uppsala universitet, Klinisk immunologi
2016
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284370 http://nbn-resolving.de/urn:isbn:978-91-554-9572-5 |
id |
ndltd-UPSALLA1-oai-DiVA.org-uu-284370 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-uu-2843702016-06-02T05:05:31ZStudies of Enterovirus Infection and Induction of Innate Immunity in Human Pancreatic CellsengAnagandula, MaheshUppsala universitet, Klinisk immunologiUppsala2016Type 1 DiabetesEnterovirusInnate ImmunityPancreasSeveral epidemiological and clinical studies have indicated a possible role of Enterovirus (EV) infection in type 1 diabetes (T1D) development. However, the exact casual mechanism of these viruses in T1D development is not known. The aim of this thesis is to study various EVs that have been shown to differ in their immune phenotype, lytic ability, association with induction of islet autoantibodies, ability to replicate, cause islet disintegration and induce innate antiviral pathways in infected pancreatic cells in vitro. Furthermore, EV presence and pathogenic process in pancreatic tissue and isolated islets of T1D patients was also studied. Studies in this thesis for first time show the detection of EV RNA and protein in recent onset live T1D patients supporting the EV hypothesis in T1D development. Further all EV serotypes studied were able to replicate in islets, causing variable amount of islet disintegration ranging from extensive islet disintegration to not affecting islet morphology at all. However, one of the EV serotype replicated in only two out of seven donors infected, highlighting the importance of individual variation between donors. Further, this serotype impaired the insulin response to glucose stimulation without causing any visible islet disintegration, suggesting that this serotype might impaired the insulin response by inducing a functional block. Infection of human islets with the EV serotypes that are differentially associated with the development of islet autoantibodies showed the islet cell disintegration that is comparable with their degree of islet autoantibody seroconversion. Suggesting that the extent of the epidemic-associated islet autoantibody induction may depend on the ability of the viral serotypes to damage islet cells. Furthermore, one of the EV strains showed unique ability to infect and replicate both in endo and exocrine cells of the pancreas. EV replication in both endo and exocrine cells affected the genes involved in innate and antiviral pathways and induction of certain genes with important antiviral activity significantly varied between different donors. Suggesting that the same EV infection could result in different outcome in different individuals. Finally, we compared the results obtained by lytic and non lytic EV strains in vitro with the findings reported in fulminant and slowly progressing autoimmune T1D and found some similarities. In conclusion the results presented in this thesis further support the role of EV in T1D development and provide more insights regarding viral and host variation. This will improve our understanding of the possible causative mechanism by EV in T1D development. Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284370urn:isbn:978-91-554-9572-5Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 1223application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Type 1 Diabetes Enterovirus Innate Immunity Pancreas |
spellingShingle |
Type 1 Diabetes Enterovirus Innate Immunity Pancreas Anagandula, Mahesh Studies of Enterovirus Infection and Induction of Innate Immunity in Human Pancreatic Cells |
description |
Several epidemiological and clinical studies have indicated a possible role of Enterovirus (EV) infection in type 1 diabetes (T1D) development. However, the exact casual mechanism of these viruses in T1D development is not known. The aim of this thesis is to study various EVs that have been shown to differ in their immune phenotype, lytic ability, association with induction of islet autoantibodies, ability to replicate, cause islet disintegration and induce innate antiviral pathways in infected pancreatic cells in vitro. Furthermore, EV presence and pathogenic process in pancreatic tissue and isolated islets of T1D patients was also studied. Studies in this thesis for first time show the detection of EV RNA and protein in recent onset live T1D patients supporting the EV hypothesis in T1D development. Further all EV serotypes studied were able to replicate in islets, causing variable amount of islet disintegration ranging from extensive islet disintegration to not affecting islet morphology at all. However, one of the EV serotype replicated in only two out of seven donors infected, highlighting the importance of individual variation between donors. Further, this serotype impaired the insulin response to glucose stimulation without causing any visible islet disintegration, suggesting that this serotype might impaired the insulin response by inducing a functional block. Infection of human islets with the EV serotypes that are differentially associated with the development of islet autoantibodies showed the islet cell disintegration that is comparable with their degree of islet autoantibody seroconversion. Suggesting that the extent of the epidemic-associated islet autoantibody induction may depend on the ability of the viral serotypes to damage islet cells. Furthermore, one of the EV strains showed unique ability to infect and replicate both in endo and exocrine cells of the pancreas. EV replication in both endo and exocrine cells affected the genes involved in innate and antiviral pathways and induction of certain genes with important antiviral activity significantly varied between different donors. Suggesting that the same EV infection could result in different outcome in different individuals. Finally, we compared the results obtained by lytic and non lytic EV strains in vitro with the findings reported in fulminant and slowly progressing autoimmune T1D and found some similarities. In conclusion the results presented in this thesis further support the role of EV in T1D development and provide more insights regarding viral and host variation. This will improve our understanding of the possible causative mechanism by EV in T1D development. |
author |
Anagandula, Mahesh |
author_facet |
Anagandula, Mahesh |
author_sort |
Anagandula, Mahesh |
title |
Studies of Enterovirus Infection and Induction of Innate Immunity in Human Pancreatic Cells |
title_short |
Studies of Enterovirus Infection and Induction of Innate Immunity in Human Pancreatic Cells |
title_full |
Studies of Enterovirus Infection and Induction of Innate Immunity in Human Pancreatic Cells |
title_fullStr |
Studies of Enterovirus Infection and Induction of Innate Immunity in Human Pancreatic Cells |
title_full_unstemmed |
Studies of Enterovirus Infection and Induction of Innate Immunity in Human Pancreatic Cells |
title_sort |
studies of enterovirus infection and induction of innate immunity in human pancreatic cells |
publisher |
Uppsala universitet, Klinisk immunologi |
publishDate |
2016 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284370 http://nbn-resolving.de/urn:isbn:978-91-554-9572-5 |
work_keys_str_mv |
AT anagandulamahesh studiesofenterovirusinfectionandinductionofinnateimmunityinhumanpancreaticcells |
_version_ |
1718292401517232128 |