Three-dimensional Virtual Histology of Early Vertebrate Scales Revealed by Synchrotron X-ray Phase-contrast Microtomography
Vertebrate hard tissues first appeared in the dermal skeletons of early jawless vertebrates (ostracoderms) and were further modified in the earliest jawed vertebrates. Fortunately, histological information is usually preserved in these early vertebrate fossils and has thus been studied for more than...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Uppsala universitet, Institutionen för organismbiologi
2015
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-238056 http://nbn-resolving.de/urn:isbn:978-91-554-9128-4 |
Summary: | Vertebrate hard tissues first appeared in the dermal skeletons of early jawless vertebrates (ostracoderms) and were further modified in the earliest jawed vertebrates. Fortunately, histological information is usually preserved in these early vertebrate fossils and has thus been studied for more than a century, done so by examining thin sections, which provide general information about the specific features of vertebrate hard tissues in their earliest forms. Recent progress in synchrotron X-ray microtomography technology has caused a revolution in imaging methods used to study the dermal skeletons of early vertebrates. Virtual thin sections obtained in this manner can be used to reconstruct the internal structures of dermal skeletons in three-dimensions (3D), such as vasculature, buried odontodes (tooth-like unites) and osteocytes. Several body scales of early vertebrates have been examined using this imaging method and in situ 3D models of internal structures are created. Andreolepis (an early osteichthyan) scale shows linear growth pattern of odontodes in early developmental stage, which is not observable in traditional thin sections. The scale of another early osteichthyan Psarolepis was studied in the same way. Comparison between Andreolepis and Psarolepis shows that cosmine, a tissue complex in dermal skeleton of early sarcopterygians, originated by a developmental change of odontode shape. Two scales of osteostracans, a group of extinct jawless vertebrates, were studied in 3D and more details have been revealed in comparison to previous results based solely on 2D thin sections. 3D data enables us to compare the vasculature and canal system in different taxa in great detail, which forms the basis of formulating primary homology hypothesis and phylogenetic characters. The new data resulting from this study suggests that vertebrate fossils have preserved much more histological information than we currently appreciate, and provide a new data source of microanatomical structures inside the fossils that can contribute new characters for phylogenetic analysis of early jawed vertebrates. |
---|