Symmetries of the Point Particle

We study point particles to illustrate the various symmetries such as the Poincaré group and its non-relativistic version. In order to find the Noether charges and the Noether currents, which are conserved under physical symmetries, we study Noether’s theorem. We describe the Pauli-Lubanski spin vec...

Full description

Bibliographic Details
Main Author: Söderberg, Alexander
Format: Others
Language:English
Published: Uppsala universitet, Teoretisk fysik 2014
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227338
id ndltd-UPSALLA1-oai-DiVA.org-uu-227338
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-uu-2273382014-08-16T05:09:47ZSymmetries of the Point ParticleengSöderberg, AlexanderUppsala universitet, Teoretisk fysik2014symmetriesspinclassical physicsclassical field theoryactionsmooth spinning particlepauli-lubanskinoethertheorempoincare grouplorentz groupgalilean transformationsrelativisticequations of motionboostrotationtranslationquantizationbosonic stringrigid particlemomentummomentageneratorsWe study point particles to illustrate the various symmetries such as the Poincaré group and its non-relativistic version. In order to find the Noether charges and the Noether currents, which are conserved under physical symmetries, we study Noether’s theorem. We describe the Pauli-Lubanski spin vector, which is invariant under the Poincaré group and describes the spin of a particle in field theory. By promoting the Pauli-Lubanski spin vector to an operator in the quantized theory we will see that it describes the spin of a particle. Moreover, we find an action for a smooth spinning bosonic particle by compactifying one string dimension together with one embedding dimension. As with the Pauli-Lubanski spin vector, we need to quantize this action to confirm that it is the action for a smooth spinning particle. Vi studerar punktpartiklar för att illustrera olika symemtrier som t.ex. Poincaré gruppen och dess icke-relativistiska version. För att hitta de Noether laddningar och Noether strömmar, vilka är bevarade under symmetrier, studerar vi Noether’s sats. Vi beskriver Pauli-Lubanksi spin vektorn, vilken har en invarians under Poincaré gruppen och beskriver spin hos en partikel i fältteori. Genom att låta Pauli-Lubanski spin vektorn agera på ett tillstånd i kvantfältteori ser vi att den beskriver spin hos en partikel. Dessutom finner vi en verkan för en spinnande partikel genom att kompaktifiera en bosonisk sträng dimension tillsammans med en inbäddad dimension. Som med Pauli-Lubanski spin vektorn, kvantiserar vi denna verkan för att bekräfta att det är en verkan för en spinnande partikel. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227338FYSAST ; FYSKAND1019application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic symmetries
spin
classical physics
classical field theory
action
smooth spinning particle
pauli-lubanski
noether
theorem
poincare group
lorentz group
galilean transformations
relativistic
equations of motion
boost
rotation
translation
quantization
bosonic string
rigid particle
momentum
momenta
generators
spellingShingle symmetries
spin
classical physics
classical field theory
action
smooth spinning particle
pauli-lubanski
noether
theorem
poincare group
lorentz group
galilean transformations
relativistic
equations of motion
boost
rotation
translation
quantization
bosonic string
rigid particle
momentum
momenta
generators
Söderberg, Alexander
Symmetries of the Point Particle
description We study point particles to illustrate the various symmetries such as the Poincaré group and its non-relativistic version. In order to find the Noether charges and the Noether currents, which are conserved under physical symmetries, we study Noether’s theorem. We describe the Pauli-Lubanski spin vector, which is invariant under the Poincaré group and describes the spin of a particle in field theory. By promoting the Pauli-Lubanski spin vector to an operator in the quantized theory we will see that it describes the spin of a particle. Moreover, we find an action for a smooth spinning bosonic particle by compactifying one string dimension together with one embedding dimension. As with the Pauli-Lubanski spin vector, we need to quantize this action to confirm that it is the action for a smooth spinning particle. === Vi studerar punktpartiklar för att illustrera olika symemtrier som t.ex. Poincaré gruppen och dess icke-relativistiska version. För att hitta de Noether laddningar och Noether strömmar, vilka är bevarade under symmetrier, studerar vi Noether’s sats. Vi beskriver Pauli-Lubanksi spin vektorn, vilken har en invarians under Poincaré gruppen och beskriver spin hos en partikel i fältteori. Genom att låta Pauli-Lubanski spin vektorn agera på ett tillstånd i kvantfältteori ser vi att den beskriver spin hos en partikel. Dessutom finner vi en verkan för en spinnande partikel genom att kompaktifiera en bosonisk sträng dimension tillsammans med en inbäddad dimension. Som med Pauli-Lubanski spin vektorn, kvantiserar vi denna verkan för att bekräfta att det är en verkan för en spinnande partikel.
author Söderberg, Alexander
author_facet Söderberg, Alexander
author_sort Söderberg, Alexander
title Symmetries of the Point Particle
title_short Symmetries of the Point Particle
title_full Symmetries of the Point Particle
title_fullStr Symmetries of the Point Particle
title_full_unstemmed Symmetries of the Point Particle
title_sort symmetries of the point particle
publisher Uppsala universitet, Teoretisk fysik
publishDate 2014
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227338
work_keys_str_mv AT soderbergalexander symmetriesofthepointparticle
_version_ 1716710913854144512