Archaeological Genetics - Approaching Human History through DNA Analysis

There are a variety of archaeological questions, which are difficult to assess by traditional archaeological methods. Similarly, there are genetic and population genetic questions about human evolution and migration that are difficult to assess by studying modern day genetic variation. Archaeologica...

Full description

Bibliographic Details
Main Author: Daskalaki, Evangelia
Format: Doctoral Thesis
Language:English
Published: Uppsala universitet, Evolutionsbiologi 2014
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-211156
http://nbn-resolving.de/urn:isbn:978-91-554-8816-1
id ndltd-UPSALLA1-oai-DiVA.org-uu-211156
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-uu-2111562014-04-30T04:54:24ZArchaeological Genetics - Approaching Human History through DNA AnalysisengDaskalaki, EvangeliaUppsala universitet, EvolutionsbiologiUppsala2014ancient DNApyrosequencingmolecular geneticsaDNAneolithizationevolutionary geneticsmtDNAviking agearchaeological geneticsgenetikevolutionsgenetiknaturvetenskapneolitiseringvikingatidarkeologisk genetikThere are a variety of archaeological questions, which are difficult to assess by traditional archaeological methods. Similarly, there are genetic and population genetic questions about human evolution and migration that are difficult to assess by studying modern day genetic variation. Archaeological genetics can directly study the archaeological remains, allowing human history to be explored by means of genetics, and genetics to be expanded into historical and pre-historical times. Examples of archaeological questions that can be resolved by genetics are determining biological sex on archaeological remains and exploring the kinship or groups buried in close proximity. Another example is one of the most important events in human prehistory – the transition from a hunter-gatherer lifestyle to farming - was driven through the diffusion of ideas or with migrating farmers. Molecular genetics has the potential to contribute in answering all these questions as well as others of similar nature. However, it is essential that the pitfalls of ancient DNA, namely fragmentation, damage and contamination are handled during data collection and data analysis. Analyses of ancient DNA presented in this thesis are based on both mitochondrial DNA and nuclear DNA through the study of single nuclear polymorphisms (SNPs). I used pyrosequencing assays in order to identify the biological sex of archaeological remains as well as verifying if fragmented remains were human or from animal sources. I used a clonal assay approach in order to retrieve sequences for the HVRI of a small family-like burial constellation from the Viking age. By the use of low coverage shotgun sequencing I retrieved sequence data from 13 crew members from the 17th century Swedish man-of-war Kronan. This data was used to determine the ancestry of the crew, which in some cases was speculated to be of non-Scandinavian or non-European origin. However, I demonstrate that all individuals were of European ancestry. Finally, I retrieved sequence data from a Neolithic farmer from the Iberian Peninsula, which added one more facet of information in exploring the Neolithization process of Europe. The Neolithic Iberian individual was genetically similar to Scandinavian Neolithic farmers, indicating that the genetic variation of prehistoric Europe correlated with subsistence mode rather than with geography. Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-211156urn:isbn:978-91-554-8816-1Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 1101application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic ancient DNA
pyrosequencing
molecular genetics
aDNA
neolithization
evolutionary genetics
mtDNA
viking age
archaeological genetics
genetik
evolutionsgenetik
naturvetenskap
neolitisering
vikingatid
arkeologisk genetik
spellingShingle ancient DNA
pyrosequencing
molecular genetics
aDNA
neolithization
evolutionary genetics
mtDNA
viking age
archaeological genetics
genetik
evolutionsgenetik
naturvetenskap
neolitisering
vikingatid
arkeologisk genetik
Daskalaki, Evangelia
Archaeological Genetics - Approaching Human History through DNA Analysis
description There are a variety of archaeological questions, which are difficult to assess by traditional archaeological methods. Similarly, there are genetic and population genetic questions about human evolution and migration that are difficult to assess by studying modern day genetic variation. Archaeological genetics can directly study the archaeological remains, allowing human history to be explored by means of genetics, and genetics to be expanded into historical and pre-historical times. Examples of archaeological questions that can be resolved by genetics are determining biological sex on archaeological remains and exploring the kinship or groups buried in close proximity. Another example is one of the most important events in human prehistory – the transition from a hunter-gatherer lifestyle to farming - was driven through the diffusion of ideas or with migrating farmers. Molecular genetics has the potential to contribute in answering all these questions as well as others of similar nature. However, it is essential that the pitfalls of ancient DNA, namely fragmentation, damage and contamination are handled during data collection and data analysis. Analyses of ancient DNA presented in this thesis are based on both mitochondrial DNA and nuclear DNA through the study of single nuclear polymorphisms (SNPs). I used pyrosequencing assays in order to identify the biological sex of archaeological remains as well as verifying if fragmented remains were human or from animal sources. I used a clonal assay approach in order to retrieve sequences for the HVRI of a small family-like burial constellation from the Viking age. By the use of low coverage shotgun sequencing I retrieved sequence data from 13 crew members from the 17th century Swedish man-of-war Kronan. This data was used to determine the ancestry of the crew, which in some cases was speculated to be of non-Scandinavian or non-European origin. However, I demonstrate that all individuals were of European ancestry. Finally, I retrieved sequence data from a Neolithic farmer from the Iberian Peninsula, which added one more facet of information in exploring the Neolithization process of Europe. The Neolithic Iberian individual was genetically similar to Scandinavian Neolithic farmers, indicating that the genetic variation of prehistoric Europe correlated with subsistence mode rather than with geography.
author Daskalaki, Evangelia
author_facet Daskalaki, Evangelia
author_sort Daskalaki, Evangelia
title Archaeological Genetics - Approaching Human History through DNA Analysis
title_short Archaeological Genetics - Approaching Human History through DNA Analysis
title_full Archaeological Genetics - Approaching Human History through DNA Analysis
title_fullStr Archaeological Genetics - Approaching Human History through DNA Analysis
title_full_unstemmed Archaeological Genetics - Approaching Human History through DNA Analysis
title_sort archaeological genetics - approaching human history through dna analysis
publisher Uppsala universitet, Evolutionsbiologi
publishDate 2014
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-211156
http://nbn-resolving.de/urn:isbn:978-91-554-8816-1
work_keys_str_mv AT daskalakievangelia archaeologicalgeneticsapproachinghumanhistorythroughdnaanalysis
_version_ 1716666493030105088