Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse
In this paper the rate of convergence, speed of execution and symplectic properties of the time-integrators Leap-Frog (LF2), fourth order Runge-Kutta(RK4) and Crank-Nicholson (CN2) have been studied. This was done by solving the one-dimensional model for a particle in a box (Dirichlet-conditions). T...
Main Author: | |
---|---|
Format: | Others |
Language: | Swedish |
Published: |
Uppsala universitet, Tillämpad beräkningsvetenskap
2013
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-208878 |
id |
ndltd-UPSALLA1-oai-DiVA.org-uu-208878 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-uu-2088782018-01-12T05:11:20ZEffektiva lösningsmetoder för Schrödingerekvationen : En jämförelsesweChristoffer, ZakrissonUppsala universitet, Tillämpad beräkningsvetenskap2013Finita differenserSBP-SATSchrödingerekvationenLeap-FrogCrank-NicholsonRunge-KuttaComputer and Information SciencesData- och informationsvetenskapComputational MathematicsBeräkningsmatematikIn this paper the rate of convergence, speed of execution and symplectic properties of the time-integrators Leap-Frog (LF2), fourth order Runge-Kutta(RK4) and Crank-Nicholson (CN2) have been studied. This was done by solving the one-dimensional model for a particle in a box (Dirichlet-conditions). The results show that RK4 is the fastest in achieving higher tolerances, while CN2 is the fastest in achieving lower tolerances. Fourth order corrections of LF (LF4)and CN (CN4) were also studied, though these showed no improvements overLF2 and CN2. All methods were shown to exhibit symplectic behavior. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-208878TVE ; TVE 13010 majapplication/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
Swedish |
format |
Others
|
sources |
NDLTD |
topic |
Finita differenser SBP-SAT Schrödingerekvationen Leap-Frog Crank-Nicholson Runge-Kutta Computer and Information Sciences Data- och informationsvetenskap Computational Mathematics Beräkningsmatematik |
spellingShingle |
Finita differenser SBP-SAT Schrödingerekvationen Leap-Frog Crank-Nicholson Runge-Kutta Computer and Information Sciences Data- och informationsvetenskap Computational Mathematics Beräkningsmatematik Christoffer, Zakrisson Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse |
description |
In this paper the rate of convergence, speed of execution and symplectic properties of the time-integrators Leap-Frog (LF2), fourth order Runge-Kutta(RK4) and Crank-Nicholson (CN2) have been studied. This was done by solving the one-dimensional model for a particle in a box (Dirichlet-conditions). The results show that RK4 is the fastest in achieving higher tolerances, while CN2 is the fastest in achieving lower tolerances. Fourth order corrections of LF (LF4)and CN (CN4) were also studied, though these showed no improvements overLF2 and CN2. All methods were shown to exhibit symplectic behavior. |
author |
Christoffer, Zakrisson |
author_facet |
Christoffer, Zakrisson |
author_sort |
Christoffer, Zakrisson |
title |
Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse |
title_short |
Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse |
title_full |
Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse |
title_fullStr |
Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse |
title_full_unstemmed |
Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse |
title_sort |
effektiva lösningsmetoder för schrödingerekvationen : en jämförelse |
publisher |
Uppsala universitet, Tillämpad beräkningsvetenskap |
publishDate |
2013 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-208878 |
work_keys_str_mv |
AT christofferzakrisson effektivalosningsmetoderforschrodingerekvationenenjamforelse |
_version_ |
1718606141165928448 |