Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse

In this paper the rate of convergence, speed of execution and symplectic properties of the time-integrators Leap-Frog (LF2), fourth order Runge-Kutta(RK4) and Crank-Nicholson (CN2) have been studied. This was done by solving the one-dimensional model for a particle in a box (Dirichlet-conditions). T...

Full description

Bibliographic Details
Main Author: Christoffer, Zakrisson
Format: Others
Language:Swedish
Published: Uppsala universitet, Tillämpad beräkningsvetenskap 2013
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-208878
id ndltd-UPSALLA1-oai-DiVA.org-uu-208878
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-uu-2088782018-01-12T05:11:20ZEffektiva lösningsmetoder för Schrödingerekvationen : En jämförelsesweChristoffer, ZakrissonUppsala universitet, Tillämpad beräkningsvetenskap2013Finita differenserSBP-SATSchrödingerekvationenLeap-FrogCrank-NicholsonRunge-KuttaComputer and Information SciencesData- och informationsvetenskapComputational MathematicsBeräkningsmatematikIn this paper the rate of convergence, speed of execution and symplectic properties of the time-integrators Leap-Frog (LF2), fourth order Runge-Kutta(RK4) and Crank-Nicholson (CN2) have been studied. This was done by solving the one-dimensional model for a particle in a box (Dirichlet-conditions). The results show that RK4 is the fastest in achieving higher tolerances, while CN2 is the fastest in achieving lower tolerances. Fourth order corrections of LF (LF4)and CN (CN4) were also studied, though these showed no improvements overLF2 and CN2. All methods were shown to exhibit symplectic behavior. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-208878TVE ; TVE 13010 majapplication/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language Swedish
format Others
sources NDLTD
topic Finita differenser
SBP-SAT
Schrödingerekvationen
Leap-Frog
Crank-Nicholson
Runge-Kutta
Computer and Information Sciences
Data- och informationsvetenskap
Computational Mathematics
Beräkningsmatematik
spellingShingle Finita differenser
SBP-SAT
Schrödingerekvationen
Leap-Frog
Crank-Nicholson
Runge-Kutta
Computer and Information Sciences
Data- och informationsvetenskap
Computational Mathematics
Beräkningsmatematik
Christoffer, Zakrisson
Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse
description In this paper the rate of convergence, speed of execution and symplectic properties of the time-integrators Leap-Frog (LF2), fourth order Runge-Kutta(RK4) and Crank-Nicholson (CN2) have been studied. This was done by solving the one-dimensional model for a particle in a box (Dirichlet-conditions). The results show that RK4 is the fastest in achieving higher tolerances, while CN2 is the fastest in achieving lower tolerances. Fourth order corrections of LF (LF4)and CN (CN4) were also studied, though these showed no improvements overLF2 and CN2. All methods were shown to exhibit symplectic behavior.
author Christoffer, Zakrisson
author_facet Christoffer, Zakrisson
author_sort Christoffer, Zakrisson
title Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse
title_short Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse
title_full Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse
title_fullStr Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse
title_full_unstemmed Effektiva lösningsmetoder för Schrödingerekvationen : En jämförelse
title_sort effektiva lösningsmetoder för schrödingerekvationen : en jämförelse
publisher Uppsala universitet, Tillämpad beräkningsvetenskap
publishDate 2013
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-208878
work_keys_str_mv AT christofferzakrisson effektivalosningsmetoderforschrodingerekvationenenjamforelse
_version_ 1718606141165928448