The effect of visibility and predators on foraging efficiency in littoral and pelagic perch

Phenotypic plasticity in Eurasian perch (Perca fluviatilis) can be driven by a trade-off for ecological specialisation to littoral and pelagic resources. Previous studies on perch have found that this specialisation can have different effects on linkage between the littoral and pelagic food web depe...

Full description

Bibliographic Details
Main Author: Karlsson, Konrad
Format: Others
Language:English
Published: Uppsala universitet, Limnologi 2012
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-182653
Description
Summary:Phenotypic plasticity in Eurasian perch (Perca fluviatilis) can be driven by a trade-off for ecological specialisation to littoral and pelagic resources. Previous studies on perch have found that this specialisation can have different effects on linkage between the littoral and pelagic food web depending on water transparency. In this study I aimed to answer how foraging efficiency and prey preference of phenotypic divergent perch are affected by high and low water transparency, and the presence of a predator in a series of aquarium experiments. Two different phenotypes of perch were kept in littoral and pelagic environments in the lab. By presenting perch with Daphnia sp. and Ephemeroptera, either separately or combined. I found that in clear water the littoral and pelagic phenotypes were comparatively more efficient on resources that were representative of their habitats (Ephemeroptera and Daphnia, respectively) and that both phenotypes prefer Ephemeroptera over Daphnia. In low visibility the differences in foraging efficiency between phenotypes when feeding on Daphnia disappeared but remained similar to clear water when feeding on Ephemeroptera. When vision was constrained littoral and pelagic perch showed no sign of prey preferences. In the presence of a predator the difference in foraging efficiency between the phenotypes, and also prey preference disappeared. I found that littoral phenotypes interacted more with other group members than did pelagic phenotypes, when foraging on littoral prey. And for perch in general, when foraging for Daphnia the interaction among group members was markedly reduced compared to when foraging for Ephemeroptera. In this study I show that morphological adaptation and prey choice is affected by visibility and predation. I also give suggestions how and argue why this can affect linkage of food webs and the community composition in littoral and pelagic habitats.