Visual Flow Display for Pilot Spatial Orientation
Pilot spatial disorientation (SD) is a significant cause of incidents and fatal accidents in aviation. The pilot is susceptible to SD especially in low visibility when the visual system is deprived of information from outside the cockpit. This thesis presents the notion of visual flow displays as en...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Uppsala universitet, Institutionen för psykologi
2009
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-111273 http://nbn-resolving.de/urn:isbn:978-91-554-7684-7 |
Summary: | Pilot spatial disorientation (SD) is a significant cause of incidents and fatal accidents in aviation. The pilot is susceptible to SD especially in low visibility when the visual system is deprived of information from outside the cockpit. This thesis presents the notion of visual flow displays as enhancement of symbology on flight displays primarily in low visibility for improved support of the pilot’s spatial orientation (SO) and control actions. In Studies I and II, synthetic visual flow of forward ego-motion was presented on displays and postural responses were used as measures of display effectiveness in determining SO. The visual flow significantly affected SO, and although the increased stimulation of the visual periphery from a width of 45° to about 105° increased the effects there was no further effect at a width of about 150° (Studies I and II). Studies I and II also showed that omitting 20°- or 30°-wide central fields of view from the visual flow either reduced or not reduced the effects. Further, although inconclusive, Study II may indicate that horizon symbology in central visual field may enhance the effects of peripheral visual flow. The appropriate integration of peripheral visual flow with the head-up display symbology of the Gripen aircraft was presented. Acceleration in a human centrifuge was used in Study III to investigate the effects of synthetic visual flow on the primarily vestibular-dependent somatogravic illusion of pitch-up. Two experiments revealed a reduced illusion with the visual flow. The results of Experiment 2 showed the visual flow scene not only reduced the illusion compared with a darkness condition but also compared with the visual scene without visual flow. Thus, similar to the main findings of Studies I and II, synthetic visual flow can significantly affect SO and supports the visually dependent SO system in an essential manner. |
---|