Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries

Density functional theory has been used to investigate cathode materials for rechargeable batteries, carbon nanotube interactions with catalyst particles and transition metal catalyzed hydrogen release in magnesium hydride nanoclusters. An effort has been made to the understand structural and electr...

Full description

Bibliographic Details
Main Author: Larsson, Peter
Format: Doctoral Thesis
Language:English
Published: Uppsala universitet, Materialteori 2009
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-108261
http://nbn-resolving.de/urn:isbn:978-91-554-7603-8
id ndltd-UPSALLA1-oai-DiVA.org-uu-108261
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-uu-1082612013-01-08T13:05:31ZComputational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for BatteriesengLarsson, PeterUppsala universitet, MaterialteoriUppsala : Acta Universitatis Upsaliensis2009Materials sciencedensity functional theorycathode materialshydrogen-storage materialscarbon nanotube growthComputational physicsBeräkningsfysikDensity functional theory has been used to investigate cathode materials for rechargeable batteries, carbon nanotube interactions with catalyst particles and transition metal catalyzed hydrogen release in magnesium hydride nanoclusters. An effort has been made to the understand structural and electrochemical properties of lithium iron silicate (Li2FeSiO4) and its manganese-doped analogue. Starting from the X-ray measurements, the crystal structure of Li2FeSiO4 was refined, and several metastable phases of partially delithiated Li2FeSiO4 were identified. There are signs that manganese doping leads to structural instability and that lithium extraction beyond 50% capacity only occurs at impractically high potentials in the new material. The chemical interaction energies of single-walled carbon nanotubes and nanoclusters were calculated. It is found that the interaction needs to be strong enough to compete with the energy gained by detaching the nanotubes and forming closed ends with carbon caps. This represents a new criterion for determining catalyst metal suitability. The stability of isolated carbon nanotube fragments were also studied, and it is argued that chirality selection during growth is best achieved by exploiting the much wider energy span of open-ended carbon nanotube fragments. Magnesium hydride nanoclusters were doped with transition metals Ti, V, Fe, and Ni. The resulting changes in hydrogen desorption energies from the surface were calculated, and the associated changes in the cluster structures reveal that the transition metals not only lower the desorption energy of hydrogen, but also seem to work as proposed in the gateway hypothesis of transition metal catalysis. Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-108261urn:isbn:978-91-554-7603-8Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 670application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Materials science
density functional theory
cathode materials
hydrogen-storage materials
carbon nanotube growth
Computational physics
Beräkningsfysik
spellingShingle Materials science
density functional theory
cathode materials
hydrogen-storage materials
carbon nanotube growth
Computational physics
Beräkningsfysik
Larsson, Peter
Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries
description Density functional theory has been used to investigate cathode materials for rechargeable batteries, carbon nanotube interactions with catalyst particles and transition metal catalyzed hydrogen release in magnesium hydride nanoclusters. An effort has been made to the understand structural and electrochemical properties of lithium iron silicate (Li2FeSiO4) and its manganese-doped analogue. Starting from the X-ray measurements, the crystal structure of Li2FeSiO4 was refined, and several metastable phases of partially delithiated Li2FeSiO4 were identified. There are signs that manganese doping leads to structural instability and that lithium extraction beyond 50% capacity only occurs at impractically high potentials in the new material. The chemical interaction energies of single-walled carbon nanotubes and nanoclusters were calculated. It is found that the interaction needs to be strong enough to compete with the energy gained by detaching the nanotubes and forming closed ends with carbon caps. This represents a new criterion for determining catalyst metal suitability. The stability of isolated carbon nanotube fragments were also studied, and it is argued that chirality selection during growth is best achieved by exploiting the much wider energy span of open-ended carbon nanotube fragments. Magnesium hydride nanoclusters were doped with transition metals Ti, V, Fe, and Ni. The resulting changes in hydrogen desorption energies from the surface were calculated, and the associated changes in the cluster structures reveal that the transition metals not only lower the desorption energy of hydrogen, but also seem to work as proposed in the gateway hypothesis of transition metal catalysis.
author Larsson, Peter
author_facet Larsson, Peter
author_sort Larsson, Peter
title Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries
title_short Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries
title_full Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries
title_fullStr Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries
title_full_unstemmed Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries
title_sort computational studies of nanotube growth, nanoclusters and cathode materials for batteries
publisher Uppsala universitet, Materialteori
publishDate 2009
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-108261
http://nbn-resolving.de/urn:isbn:978-91-554-7603-8
work_keys_str_mv AT larssonpeter computationalstudiesofnanotubegrowthnanoclustersandcathodematerialsforbatteries
_version_ 1716508769571045376