The Diamond Lemma for Power Series Algebras
The main result in this thesis is the generalisation of Bergman's diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Umeå universitet, Matematiska institutionen
2002
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-92 http://nbn-resolving.de/urn:isbn:91-7305-327-9 |
id |
ndltd-UPSALLA1-oai-DiVA.org-umu-92 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-umu-922013-01-08T13:09:43ZThe Diamond Lemma for Power Series AlgebrasengHellström, LarsUmeå universitet, Matematiska institutionenUmeå : Umeå universitet2002Mathematical analysisdiamond lemmapower series algebraGröbner basisembedding into skew fieldsarchimedean element in semigroupq-deformed Heisenberg--Weyl algebrapolynomial degreering normBirkhoff orthogonalityfiltered structureMatematisk analysMathematical analysisAnalysThe main result in this thesis is the generalisation of Bergman's diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds. There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a real-valued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation. The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders. Doctoral thesis, monographinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-92urn:isbn:91-7305-327-9Doctoral thesis / Umeå University, Department of Mathematics, 1102-8300 ; 23application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Mathematical analysis diamond lemma power series algebra Gröbner basis embedding into skew fields archimedean element in semigroup q-deformed Heisenberg--Weyl algebra polynomial degree ring norm Birkhoff orthogonality filtered structure Matematisk analys Mathematical analysis Analys |
spellingShingle |
Mathematical analysis diamond lemma power series algebra Gröbner basis embedding into skew fields archimedean element in semigroup q-deformed Heisenberg--Weyl algebra polynomial degree ring norm Birkhoff orthogonality filtered structure Matematisk analys Mathematical analysis Analys Hellström, Lars The Diamond Lemma for Power Series Algebras |
description |
The main result in this thesis is the generalisation of Bergman's diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds. There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a real-valued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation. The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders. |
author |
Hellström, Lars |
author_facet |
Hellström, Lars |
author_sort |
Hellström, Lars |
title |
The Diamond Lemma for Power Series Algebras |
title_short |
The Diamond Lemma for Power Series Algebras |
title_full |
The Diamond Lemma for Power Series Algebras |
title_fullStr |
The Diamond Lemma for Power Series Algebras |
title_full_unstemmed |
The Diamond Lemma for Power Series Algebras |
title_sort |
diamond lemma for power series algebras |
publisher |
Umeå universitet, Matematiska institutionen |
publishDate |
2002 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-92 http://nbn-resolving.de/urn:isbn:91-7305-327-9 |
work_keys_str_mv |
AT hellstromlars thediamondlemmaforpowerseriesalgebras AT hellstromlars diamondlemmaforpowerseriesalgebras |
_version_ |
1716510903401185280 |