Speech Recognition Software and Vidispine
To evaluate libraries for continuous speech recognition, a test based on TED-talk videos was created. The different speech recognition libraries PocketSphinx, Dragon NaturallySpeaking and Microsoft Speech API were part of the evaluation. From the words that the libraries recognized, Word Error Rate...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Umeå universitet, Institutionen för datavetenskap
2013
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-71428 |
id |
ndltd-UPSALLA1-oai-DiVA.org-umu-71428 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-umu-714282013-05-30T03:59:00ZSpeech Recognition Software and VidispineengNilsson, TobiasUmeå universitet, Institutionen för datavetenskap2013Computer scienceDatavetenskapTo evaluate libraries for continuous speech recognition, a test based on TED-talk videos was created. The different speech recognition libraries PocketSphinx, Dragon NaturallySpeaking and Microsoft Speech API were part of the evaluation. From the words that the libraries recognized, Word Error Rate (WER) was calculated and the results show that Microsoft SAPI performed worst with a WER of 60.8%, PocketSphinx at second place with 59.9% and Dragon NaturallySpeaking as the best with 42.6%. These results were all achieved with a Real Time Factor (RTF) of less than 1.0. PocketSphinx was chosen as the best candidate for the intended system on the basis that it is open-source, free and would be a better match to the system. By modifying the language model and dictionary to closer resemble typical TED-talk contents, it was also possible to improve the WER for PocketSphinx to a value of 39.5%, however with the cost of RTF which passed the 1.0 limit,making it less useful for live video. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-71428UMNAD ; 937application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
Computer science Datavetenskap |
spellingShingle |
Computer science Datavetenskap Nilsson, Tobias Speech Recognition Software and Vidispine |
description |
To evaluate libraries for continuous speech recognition, a test based on TED-talk videos was created. The different speech recognition libraries PocketSphinx, Dragon NaturallySpeaking and Microsoft Speech API were part of the evaluation. From the words that the libraries recognized, Word Error Rate (WER) was calculated and the results show that Microsoft SAPI performed worst with a WER of 60.8%, PocketSphinx at second place with 59.9% and Dragon NaturallySpeaking as the best with 42.6%. These results were all achieved with a Real Time Factor (RTF) of less than 1.0. PocketSphinx was chosen as the best candidate for the intended system on the basis that it is open-source, free and would be a better match to the system. By modifying the language model and dictionary to closer resemble typical TED-talk contents, it was also possible to improve the WER for PocketSphinx to a value of 39.5%, however with the cost of RTF which passed the 1.0 limit,making it less useful for live video. |
author |
Nilsson, Tobias |
author_facet |
Nilsson, Tobias |
author_sort |
Nilsson, Tobias |
title |
Speech Recognition Software and Vidispine |
title_short |
Speech Recognition Software and Vidispine |
title_full |
Speech Recognition Software and Vidispine |
title_fullStr |
Speech Recognition Software and Vidispine |
title_full_unstemmed |
Speech Recognition Software and Vidispine |
title_sort |
speech recognition software and vidispine |
publisher |
Umeå universitet, Institutionen för datavetenskap |
publishDate |
2013 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-71428 |
work_keys_str_mv |
AT nilssontobias speechrecognitionsoftwareandvidispine |
_version_ |
1716586221693566976 |