Modelling of spin and other quantum effects in plasmas

The development of quantum mechanics during the 20th century gave rise to a completely new way of describing physics. The interpretation of quantum theory is inherently difficult: for example, many-body systems are described by a so called density matrix which has no straightforward analogue in clas...

Full description

Bibliographic Details
Main Author: Zamanian, Jens
Format: Doctoral Thesis
Language:English
Published: Umeå universitet, Institutionen för fysik 2012
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-53320
http://nbn-resolving.de/urn:isbn:978-91-7459-385-3
Description
Summary:The development of quantum mechanics during the 20th century gave rise to a completely new way of describing physics. The interpretation of quantum theory is inherently difficult: for example, many-body systems are described by a so called density matrix which has no straightforward analogue in classical theory. However, in the 30’s Wigner proposed an alternative way of describing many-body systems, using a quasi-probability distribution function. This made the connection between classical and quantum kinetic theory clearer. This thesis is concerned with modelling of quantum effects in plasmas. The focus lies on describing plasmas containing spin-1/2 particles. For this purpose, new models, based on quantum kinetic theory, are derived. This is achieved by starting from the evolution equation for the density matrix and applying a combination of the Wigner transformation for the position degree of freedom and the Q-transformation for the spin. The properties of the resulting kinetic theory are then investigated and it is shown to satisfy basic necessary criteria such as energy conservation. The kinetic equation is then used to derive a fluid theory for spin-1/2 particles. In this thesis the kinetic and fluid models are applied to different problems in quantum plasma physics. For example it will be shown that the quantum electrodynamic correction to the electron g-factor can give rise to a wave mode which lacks classical analogue, and that spin may affect the damping rate of Alfvén waves. The models will also be applied to nonlinear problems and it will be shown that they give rise to modifications of the so called spin ponderomotive force.