The Minimum Description Length principle in model selection : An evaluation of the renormalized maximum likelihood criterion in linear- and logistic regression analysis

Bibliographic Details
Main Authors: Fowler, Philip, Lindblad, Pernilla
Format: Others
Language:English
Published: Umeå universitet, Statistiska institutionen 2011
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-49707
id ndltd-UPSALLA1-oai-DiVA.org-umu-49707
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-umu-497072013-01-08T13:40:16ZThe Minimum Description Length principle in model selection : An evaluation of the renormalized maximum likelihood criterion in linear- and logistic regression analysisengFowler, PhilipLindblad, PernillaUmeå universitet, Statistiska institutionenUmeå universitet, Statistiska institutionen2011Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-49707application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
author Fowler, Philip
Lindblad, Pernilla
spellingShingle Fowler, Philip
Lindblad, Pernilla
The Minimum Description Length principle in model selection : An evaluation of the renormalized maximum likelihood criterion in linear- and logistic regression analysis
author_facet Fowler, Philip
Lindblad, Pernilla
author_sort Fowler, Philip
title The Minimum Description Length principle in model selection : An evaluation of the renormalized maximum likelihood criterion in linear- and logistic regression analysis
title_short The Minimum Description Length principle in model selection : An evaluation of the renormalized maximum likelihood criterion in linear- and logistic regression analysis
title_full The Minimum Description Length principle in model selection : An evaluation of the renormalized maximum likelihood criterion in linear- and logistic regression analysis
title_fullStr The Minimum Description Length principle in model selection : An evaluation of the renormalized maximum likelihood criterion in linear- and logistic regression analysis
title_full_unstemmed The Minimum Description Length principle in model selection : An evaluation of the renormalized maximum likelihood criterion in linear- and logistic regression analysis
title_sort minimum description length principle in model selection : an evaluation of the renormalized maximum likelihood criterion in linear- and logistic regression analysis
publisher Umeå universitet, Statistiska institutionen
publishDate 2011
url http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-49707
work_keys_str_mv AT fowlerphilip theminimumdescriptionlengthprincipleinmodelselectionanevaluationoftherenormalizedmaximumlikelihoodcriterioninlinearandlogisticregressionanalysis
AT lindbladpernilla theminimumdescriptionlengthprincipleinmodelselectionanevaluationoftherenormalizedmaximumlikelihoodcriterioninlinearandlogisticregressionanalysis
AT fowlerphilip minimumdescriptionlengthprincipleinmodelselectionanevaluationoftherenormalizedmaximumlikelihoodcriterioninlinearandlogisticregressionanalysis
AT lindbladpernilla minimumdescriptionlengthprincipleinmodelselectionanevaluationoftherenormalizedmaximumlikelihoodcriterioninlinearandlogisticregressionanalysis
_version_ 1716525598340284416