Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?
Quality Control is a term often used within production and is referring to managing processes so they produce capable products. Within Quality Control, process capability index is a common measure to oversee processes. Safety Region Plots were introduced to do this graphically. In Albing & V...
Main Authors: | , |
---|---|
Format: | Others |
Language: | Swedish |
Published: |
Umeå universitet, Statistiska institutionen
2010
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-34821 |
id |
ndltd-UPSALLA1-oai-DiVA.org-umu-34821 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-umu-348212013-01-08T13:25:11ZDet elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?sweThe robustness of the elliptical safety regionTano Bask, AndreasJaurin, JohanUmeå universitet, Statistiska institutionenUmeå universitet, Statistiska institutionen2010Elliptical safety region plotRExcelnon-normalityStatisticsStatistikQuality Control is a term often used within production and is referring to managing processes so they produce capable products. Within Quality Control, process capability index is a common measure to oversee processes. Safety Region Plots were introduced to do this graphically. In Albing & Vännman (2010) the concept of Safety Region Plots is expanded to incorporate an elliptical shape. The method of Elliptical Safety Region Plots assumes a normally distributed data. In this paper we are looking at the robustness of the Elliptical Safety Region Plots if we can assume a symmetrically, but non-normal, distribution. In the results we can conclude that an adjustment is required for symmetric, but non-normal, data if the method in Albing & Vännman (2010) is going to be used. An eventual adjustment is discussed in discussions. To easily be able to use the Elliptical Safety Region Plots mentioned in Albing & Vännman (2010) we have developed a program in RExcel. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-34821application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
Swedish |
format |
Others
|
sources |
NDLTD |
topic |
Elliptical safety region plot RExcel non-normality Statistics Statistik |
spellingShingle |
Elliptical safety region plot RExcel non-normality Statistics Statistik Tano Bask, Andreas Jaurin, Johan Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial? |
description |
Quality Control is a term often used within production and is referring to managing processes so they produce capable products. Within Quality Control, process capability index is a common measure to oversee processes. Safety Region Plots were introduced to do this graphically. In Albing & Vännman (2010) the concept of Safety Region Plots is expanded to incorporate an elliptical shape. The method of Elliptical Safety Region Plots assumes a normally distributed data. In this paper we are looking at the robustness of the Elliptical Safety Region Plots if we can assume a symmetrically, but non-normal, distribution. In the results we can conclude that an adjustment is required for symmetric, but non-normal, data if the method in Albing & Vännman (2010) is going to be used. An eventual adjustment is discussed in discussions. To easily be able to use the Elliptical Safety Region Plots mentioned in Albing & Vännman (2010) we have developed a program in RExcel. |
author |
Tano Bask, Andreas Jaurin, Johan |
author_facet |
Tano Bask, Andreas Jaurin, Johan |
author_sort |
Tano Bask, Andreas |
title |
Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial? |
title_short |
Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial? |
title_full |
Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial? |
title_fullStr |
Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial? |
title_full_unstemmed |
Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial? |
title_sort |
det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial? |
publisher |
Umeå universitet, Statistiska institutionen |
publishDate |
2010 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-34821 |
work_keys_str_mv |
AT tanobaskandreas detelliptiskasakerhetsomradetsrobusthethurrobustarmetodenmeddeelliptiskasakerhetsomradenaforettsymmetrisktmenickenormalfordelatdatamaterial AT jaurinjohan detelliptiskasakerhetsomradetsrobusthethurrobustarmetodenmeddeelliptiskasakerhetsomradenaforettsymmetrisktmenickenormalfordelatdatamaterial AT tanobaskandreas therobustnessoftheellipticalsafetyregion AT jaurinjohan therobustnessoftheellipticalsafetyregion |
_version_ |
1716519738735067136 |