Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?

Quality Control is a term often used within production and is referring to managing processes so they produce capable products. Within Quality Control, process capability index is a common measure to oversee processes. Safety Region Plots were introduced to do this graphically. In Albing & V...

Full description

Bibliographic Details
Main Authors: Tano Bask, Andreas, Jaurin, Johan
Format: Others
Language:Swedish
Published: Umeå universitet, Statistiska institutionen 2010
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-34821
id ndltd-UPSALLA1-oai-DiVA.org-umu-34821
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-umu-348212013-01-08T13:25:11ZDet elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?sweThe robustness of the elliptical safety regionTano Bask, AndreasJaurin, JohanUmeå universitet, Statistiska institutionenUmeå universitet, Statistiska institutionen2010Elliptical safety region plotRExcelnon-normalityStatisticsStatistikQuality Control is a term often used within production and is referring to managing processes so they produce capable products. Within Quality Control, process capability index is a common measure to oversee processes. Safety Region Plots were introduced to do this graphically. In Albing & Vännman (2010) the concept of Safety Region Plots is expanded to incorporate an elliptical shape. The method of Elliptical Safety Region Plots assumes a normally distributed data. In this paper we are looking at the robustness of the Elliptical Safety Region Plots if we can assume a symmetrically, but non-normal, distribution. In the results we can conclude that an adjustment is required for symmetric, but non-normal, data if the method in Albing & Vännman (2010) is going to be used. An eventual adjustment is discussed in discussions. To easily be able to use the Elliptical Safety Region Plots mentioned in Albing & Vännman (2010) we have developed a program in RExcel. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-34821application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language Swedish
format Others
sources NDLTD
topic Elliptical safety region plot
RExcel
non-normality
Statistics
Statistik
spellingShingle Elliptical safety region plot
RExcel
non-normality
Statistics
Statistik
Tano Bask, Andreas
Jaurin, Johan
Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?
description Quality Control is a term often used within production and is referring to managing processes so they produce capable products. Within Quality Control, process capability index is a common measure to oversee processes. Safety Region Plots were introduced to do this graphically. In Albing & Vännman (2010) the concept of Safety Region Plots is expanded to incorporate an elliptical shape. The method of Elliptical Safety Region Plots assumes a normally distributed data. In this paper we are looking at the robustness of the Elliptical Safety Region Plots if we can assume a symmetrically, but non-normal, distribution. In the results we can conclude that an adjustment is required for symmetric, but non-normal, data if the method in Albing & Vännman (2010) is going to be used. An eventual adjustment is discussed in discussions. To easily be able to use the Elliptical Safety Region Plots mentioned in Albing & Vännman (2010) we have developed a program in RExcel.
author Tano Bask, Andreas
Jaurin, Johan
author_facet Tano Bask, Andreas
Jaurin, Johan
author_sort Tano Bask, Andreas
title Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?
title_short Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?
title_full Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?
title_fullStr Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?
title_full_unstemmed Det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?
title_sort det elliptiska säkerhetsområdets robusthet : hur robust är metoden med de elliptiska säkerhetsområdena förett symmetriskt men icke normalfördelat datamaterial?
publisher Umeå universitet, Statistiska institutionen
publishDate 2010
url http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-34821
work_keys_str_mv AT tanobaskandreas detelliptiskasakerhetsomradetsrobusthethurrobustarmetodenmeddeelliptiskasakerhetsomradenaforettsymmetrisktmenickenormalfordelatdatamaterial
AT jaurinjohan detelliptiskasakerhetsomradetsrobusthethurrobustarmetodenmeddeelliptiskasakerhetsomradenaforettsymmetrisktmenickenormalfordelatdatamaterial
AT tanobaskandreas therobustnessoftheellipticalsafetyregion
AT jaurinjohan therobustnessoftheellipticalsafetyregion
_version_ 1716519738735067136