Expressing emotions through vibration for perception and control
This thesis addresses a challenging problem: “how to let the visually impaired ‘see’ others emotions”. We, human beings, are heavily dependent on facial expressions to express ourselves. A smile shows that the person you are talking to is pleased, amused, relieved etc. People use emotional informati...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Umeå universitet, Institutionen för tillämpad fysik och elektronik
2010
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-32990 http://nbn-resolving.de/urn:isbn:978-91-7264-978-1 |
id |
ndltd-UPSALLA1-oai-DiVA.org-umu-32990 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Multimodal Signal Processing Mobile Communication Vibrotactile Rendering Locally Linear Embedding Object Detection Human Facial Expression Analysis Lip Tracking Object Tracking HCI Expectation-Maximization Algorithm Lipless Tracking Image Analysis Visually Impaired. Signal processing Signalbehandling Image analysis Bildanalys Computer science Datavetenskap Telecommunication Telekommunikation Systems engineering Systemteknik |
spellingShingle |
Multimodal Signal Processing Mobile Communication Vibrotactile Rendering Locally Linear Embedding Object Detection Human Facial Expression Analysis Lip Tracking Object Tracking HCI Expectation-Maximization Algorithm Lipless Tracking Image Analysis Visually Impaired. Signal processing Signalbehandling Image analysis Bildanalys Computer science Datavetenskap Telecommunication Telekommunikation Systems engineering Systemteknik ur Réhman, Shafiq Expressing emotions through vibration for perception and control |
description |
This thesis addresses a challenging problem: “how to let the visually impaired ‘see’ others emotions”. We, human beings, are heavily dependent on facial expressions to express ourselves. A smile shows that the person you are talking to is pleased, amused, relieved etc. People use emotional information from facial expressions to switch between conversation topics and to determine attitudes of individuals. Missing emotional information from facial expressions and head gestures makes the visually impaired extremely difficult to interact with others in social events. To enhance the visually impaired’s social interactive ability, in this thesis we have been working on the scientific topic of ‘expressing human emotions through vibrotactile patterns’. It is quite challenging to deliver human emotions through touch since our touch channel is very limited. We first investigated how to render emotions through a vibrator. We developed a real time “lipless” tracking system to extract dynamic emotions from the mouth and employed mobile phones as a platform for the visually impaired to perceive primary emotion types. Later on, we extended the system to render more general dynamic media signals: for example, render live football games through vibration in the mobile for improving mobile user communication and entertainment experience. To display more natural emotions (i.e. emotion type plus emotion intensity), we developed the technology to enable the visually impaired to directly interpret human emotions. This was achieved by use of machine vision techniques and vibrotactile display. The display is comprised of a ‘vibration actuators matrix’ mounted on the back of a chair and the actuators are sequentially activated to provide dynamic emotional information. The research focus has been on finding a global, analytical, and semantic representation for facial expressions to replace state of the art facial action coding systems (FACS) approach. We proposed to use the manifold of facial expressions to characterize dynamic emotions. The basic emotional expressions with increasing intensity become curves on the manifold extended from the center. The blends of emotions lie between those curves, which could be defined analytically by the positions of the main curves. The manifold is the “Braille Code” of emotions. The developed methodology and technology has been extended for building assistive wheelchair systems to aid a specific group of disabled people, cerebral palsy or stroke patients (i.e. lacking fine motor control skills), who don’t have ability to access and control the wheelchair with conventional means, such as joystick or chin stick. The solution is to extract the manifold of the head or the tongue gestures for controlling the wheelchair. The manifold is rendered by a 2D vibration array to provide user of the wheelchair with action information from gestures and system status information, which is very important in enhancing usability of such an assistive system. Current research work not only provides a foundation stone for vibrotactile rendering system based on object localization but also a concrete step to a new dimension of human-machine interaction. === Taktil Video |
author |
ur Réhman, Shafiq |
author_facet |
ur Réhman, Shafiq |
author_sort |
ur Réhman, Shafiq |
title |
Expressing emotions through vibration for perception and control |
title_short |
Expressing emotions through vibration for perception and control |
title_full |
Expressing emotions through vibration for perception and control |
title_fullStr |
Expressing emotions through vibration for perception and control |
title_full_unstemmed |
Expressing emotions through vibration for perception and control |
title_sort |
expressing emotions through vibration for perception and control |
publisher |
Umeå universitet, Institutionen för tillämpad fysik och elektronik |
publishDate |
2010 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-32990 http://nbn-resolving.de/urn:isbn:978-91-7264-978-1 |
work_keys_str_mv |
AT urrehmanshafiq expressingemotionsthroughvibrationforperceptionandcontrol AT urrehmanshafiq expressingemotionsthroughvibration |
_version_ |
1716508704544653312 |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-umu-329902013-01-08T13:06:09ZExpressing emotions through vibration for perception and controlengExpressing emotions through vibrationur Réhman, ShafiqUmeå universitet, Institutionen för tillämpad fysik och elektronikUmeå : Umeå universitet, Institutionen för tillämpad fysik och elektronik2010Multimodal Signal ProcessingMobile CommunicationVibrotactile RenderingLocally Linear EmbeddingObject DetectionHuman Facial Expression AnalysisLip TrackingObject TrackingHCIExpectation-Maximization AlgorithmLipless TrackingImage AnalysisVisually Impaired.Signal processingSignalbehandlingImage analysisBildanalysComputer scienceDatavetenskapTelecommunicationTelekommunikationSystems engineeringSystemteknikThis thesis addresses a challenging problem: “how to let the visually impaired ‘see’ others emotions”. We, human beings, are heavily dependent on facial expressions to express ourselves. A smile shows that the person you are talking to is pleased, amused, relieved etc. People use emotional information from facial expressions to switch between conversation topics and to determine attitudes of individuals. Missing emotional information from facial expressions and head gestures makes the visually impaired extremely difficult to interact with others in social events. To enhance the visually impaired’s social interactive ability, in this thesis we have been working on the scientific topic of ‘expressing human emotions through vibrotactile patterns’. It is quite challenging to deliver human emotions through touch since our touch channel is very limited. We first investigated how to render emotions through a vibrator. We developed a real time “lipless” tracking system to extract dynamic emotions from the mouth and employed mobile phones as a platform for the visually impaired to perceive primary emotion types. Later on, we extended the system to render more general dynamic media signals: for example, render live football games through vibration in the mobile for improving mobile user communication and entertainment experience. To display more natural emotions (i.e. emotion type plus emotion intensity), we developed the technology to enable the visually impaired to directly interpret human emotions. This was achieved by use of machine vision techniques and vibrotactile display. The display is comprised of a ‘vibration actuators matrix’ mounted on the back of a chair and the actuators are sequentially activated to provide dynamic emotional information. The research focus has been on finding a global, analytical, and semantic representation for facial expressions to replace state of the art facial action coding systems (FACS) approach. We proposed to use the manifold of facial expressions to characterize dynamic emotions. The basic emotional expressions with increasing intensity become curves on the manifold extended from the center. The blends of emotions lie between those curves, which could be defined analytically by the positions of the main curves. The manifold is the “Braille Code” of emotions. The developed methodology and technology has been extended for building assistive wheelchair systems to aid a specific group of disabled people, cerebral palsy or stroke patients (i.e. lacking fine motor control skills), who don’t have ability to access and control the wheelchair with conventional means, such as joystick or chin stick. The solution is to extract the manifold of the head or the tongue gestures for controlling the wheelchair. The manifold is rendered by a 2D vibration array to provide user of the wheelchair with action information from gestures and system status information, which is very important in enhancing usability of such an assistive system. Current research work not only provides a foundation stone for vibrotactile rendering system based on object localization but also a concrete step to a new dimension of human-machine interaction. Taktil VideoDoctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-32990urn:isbn:978-91-7264-978-1Digital Media Lab, 1652-6295 ; 12application/pdfinfo:eu-repo/semantics/openAccess |