Approximation and Subextension of Negative Plurisubharmonic Functions

In this thesis we study approximation of negative plurisubharmonic functions by functions defined on strictly larger domains. We show that, under certain conditions, every function u that is defined on a bounded hyperconvex domain Ω in Cn and has essentially boundary values zero and bounded Monge-Am...

Full description

Bibliographic Details
Main Author: Hed, Lisa
Format: Others
Language:English
Published: Umeå universitet, Matematik och matematisk statistik 2008
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1799
http://nbn-resolving.de/urn:isbn:978-91-7264-622-3
Description
Summary:In this thesis we study approximation of negative plurisubharmonic functions by functions defined on strictly larger domains. We show that, under certain conditions, every function u that is defined on a bounded hyperconvex domain Ω in Cn and has essentially boundary values zero and bounded Monge-Ampère mass, can be approximated by an increasing sequence of functions {uj} that are defined on strictly larger domains, has boundary values zero and bounded Monge-Ampère mass. We also generalize this and show that, under the same conditions, the approximation property is true if the function u has essentially boundary values G, where G is a plurisubharmonic functions with certain properties. To show these approximation theorems we use subextension. We show that if Ω_1 and Ω_2 are hyperconvex domains in Cn and if u is a plurisubharmonic function on Ω_1 with given boundary values and with bounded Monge-Ampère mass, then we can find a plurisubharmonic function û defined on Ω_2, with given boundary values, such that û <= u on Ω and with control over the Monge-Ampère mass of û.