Simulering av ett 10-40 kV nät för analys av förluster och kapacitetsgränser
This study was carried out on behalf of Pite Energi with the guidance of Rejlers. The assignment was to develop a simulation model over part of Pite Energi's power grid. This will allow calculations of losses and capacity limits in the network, which then can form the basis for future efficienc...
Main Author: | |
---|---|
Format: | Others |
Language: | Swedish |
Published: |
Umeå universitet, Institutionen för tillämpad fysik och elektronik
2020
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-171664 |
id |
ndltd-UPSALLA1-oai-DiVA.org-umu-171664 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-umu-1716642020-06-10T04:24:30ZSimulering av ett 10-40 kV nät för analys av förluster och kapacitetsgränsersweSimulation of a 10-40 kV grid for analysis of transmission losses and capacity limitsLyxell, EricUmeå universitet, Institutionen för tillämpad fysik och elektronik2020ElnätNätförlusterEnergy SystemsEnergisystemThis study was carried out on behalf of Pite Energi with the guidance of Rejlers. The assignment was to develop a simulation model over part of Pite Energi's power grid. This will allow calculations of losses and capacity limits in the network, which then can form the basis for future efficiency improvements. The work has also investigated the possibility of a backup line for the voltage level of 40 kV and how the energy losses are affected under the periods of high and low load in the 10 kV grid, respectively. The grid is constructed with two 40 kV lines, ordinary and reserve, which are parallel to each other. The voltage in these lines is transformed down to two different voltage levels of 10 and 20 kV, respectively. Data has been collected on the exracted load at 10 kV as well as electricity production from 35 MW wind power at 20 kV. This data was collected by Pite Energi for all hours of 2019 and used as input in the thesis work for simulations and calculations of the grid. The investigated 40 kV grid shows a reduced loss as load increases in the 10 kV grid as long as the increase follows the load variations for 2019. Compared to the losses for the base case, reduced losses are obtained in 40 kV networks with loads up to 16-18 MW. The report also shows that there are opportunities for further energy savings through regulating production, or energy storage in the wind farm. The difference in network losses between high and low load times is very small. This is largely due to the large difference between production and consumption in the grid. With the load variations measured for 2019, it shows that the limitations in the 40 kV network are primarily due to the thermal limits for both ordinary and reserve. The result also shows that today there is a good margin to the network's capacity limits and will most likely be able to handle any load increases that may come in the near future. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-171664application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
Swedish |
format |
Others
|
sources |
NDLTD |
topic |
Elnät Nätförluster Energy Systems Energisystem |
spellingShingle |
Elnät Nätförluster Energy Systems Energisystem Lyxell, Eric Simulering av ett 10-40 kV nät för analys av förluster och kapacitetsgränser |
description |
This study was carried out on behalf of Pite Energi with the guidance of Rejlers. The assignment was to develop a simulation model over part of Pite Energi's power grid. This will allow calculations of losses and capacity limits in the network, which then can form the basis for future efficiency improvements. The work has also investigated the possibility of a backup line for the voltage level of 40 kV and how the energy losses are affected under the periods of high and low load in the 10 kV grid, respectively. The grid is constructed with two 40 kV lines, ordinary and reserve, which are parallel to each other. The voltage in these lines is transformed down to two different voltage levels of 10 and 20 kV, respectively. Data has been collected on the exracted load at 10 kV as well as electricity production from 35 MW wind power at 20 kV. This data was collected by Pite Energi for all hours of 2019 and used as input in the thesis work for simulations and calculations of the grid. The investigated 40 kV grid shows a reduced loss as load increases in the 10 kV grid as long as the increase follows the load variations for 2019. Compared to the losses for the base case, reduced losses are obtained in 40 kV networks with loads up to 16-18 MW. The report also shows that there are opportunities for further energy savings through regulating production, or energy storage in the wind farm. The difference in network losses between high and low load times is very small. This is largely due to the large difference between production and consumption in the grid. With the load variations measured for 2019, it shows that the limitations in the 40 kV network are primarily due to the thermal limits for both ordinary and reserve. The result also shows that today there is a good margin to the network's capacity limits and will most likely be able to handle any load increases that may come in the near future. |
author |
Lyxell, Eric |
author_facet |
Lyxell, Eric |
author_sort |
Lyxell, Eric |
title |
Simulering av ett 10-40 kV nät för analys av förluster och kapacitetsgränser |
title_short |
Simulering av ett 10-40 kV nät för analys av förluster och kapacitetsgränser |
title_full |
Simulering av ett 10-40 kV nät för analys av förluster och kapacitetsgränser |
title_fullStr |
Simulering av ett 10-40 kV nät för analys av förluster och kapacitetsgränser |
title_full_unstemmed |
Simulering av ett 10-40 kV nät för analys av förluster och kapacitetsgränser |
title_sort |
simulering av ett 10-40 kv nät för analys av förluster och kapacitetsgränser |
publisher |
Umeå universitet, Institutionen för tillämpad fysik och elektronik |
publishDate |
2020 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-171664 |
work_keys_str_mv |
AT lyxelleric simuleringavett1040kvnatforanalysavforlusterochkapacitetsgranser AT lyxelleric simulationofa1040kvgridforanalysisoftransmissionlossesandcapacitylimits |
_version_ |
1719318846382276608 |