Binary classification for predicting propensity to buy flight tickets. : A study on whether binary classification can be used to predict Scandinavian Airlines customers’ propensity to buy a flight ticket within the next seven days.

A customers propensity to buy a certain product is a widely researched field and is applied in multiple industries. In this thesis it is showed that using binary classification on data from Scandinavian Airlines can predict their customers propensity to book a flight within the next coming seven day...

Full description

Bibliographic Details
Main Authors: Andersson, Martin, Mazouch, Marcus
Format: Others
Language:English
Published: Umeå universitet, Institutionen för matematik och matematisk statistik 2019
Subjects:
rbf
ai
sas
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160855
id ndltd-UPSALLA1-oai-DiVA.org-umu-160855
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-umu-1608552019-08-13T04:27:33ZBinary classification for predicting propensity to buy flight tickets. : A study on whether binary classification can be used to predict Scandinavian Airlines customers’ propensity to buy a flight ticket within the next seven days.engSvensk titel: Binär klassificering applicerat på att prediktera benägenhet att köpa flygbiljetter.Andersson, MartinMazouch, MarcusUmeå universitet, Institutionen för matematik och matematisk statistikUmeå universitet, Institutionen för matematik och matematisk statistik2019statisticsclassificationmachine learninglogistic regressionsupport vector machinerbfsignificancepredictionpropensity to buyflightticketsaiartificiell intelligenswalds testsasscandinavian airlinesstatistikklassificeringmaskininlärninglogistic regressionsupport vector machinerbfsignifikanswalds testprediktionbenägenhet att köpaflightbiljettflygaiartificial intelligencesasscandinavian airlinesProbability Theory and StatisticsSannolikhetsteori och statistikA customers propensity to buy a certain product is a widely researched field and is applied in multiple industries. In this thesis it is showed that using binary classification on data from Scandinavian Airlines can predict their customers propensity to book a flight within the next coming seven days. A comparison between logistic regression and support vector machine is presented and logistic regression with reduced number of variables is chosen as the final model, due to it’s simplicity and accuracy. The explanatory variables contains exclusively booking history, whilst customer demographics and search history is showed to be insignificant. En kunds benägenhet att göra ett visst köp är ett allmänt undersökt område som applicerats i flera olika branscher. I den här studien visas det att statistiska binära klassificeringsmodeller kan användas för att prediktera Scandinavian Airlines kunders benägenhet att köpa en resa de kommande sju dagarna. En jämförelse är presenterad mellan logistisk regression och stödvektormaskin och logistisk regression med reducerat antal parametrar väljs som den slutgiltiga modellen tack vare sin enkelhet och träffsäkerhet. De förklarande variablerna är uteslutande bokningshistorik medan kundens demografi och sökdata visas vara insignifikant. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160855application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic statistics
classification
machine learning
logistic regression
support vector machine
rbf
significance
prediction
propensity to buy
flight
tickets
ai
artificiell intelligens
walds test
sas
scandinavian airlines
statistik
klassificering
maskininlärning
logistic regression
support vector machine
rbf
signifikans
walds test
prediktion
benägenhet att köpa
flight
biljett
flyg
ai
artificial intelligence
sas
scandinavian airlines
Probability Theory and Statistics
Sannolikhetsteori och statistik
spellingShingle statistics
classification
machine learning
logistic regression
support vector machine
rbf
significance
prediction
propensity to buy
flight
tickets
ai
artificiell intelligens
walds test
sas
scandinavian airlines
statistik
klassificering
maskininlärning
logistic regression
support vector machine
rbf
signifikans
walds test
prediktion
benägenhet att köpa
flight
biljett
flyg
ai
artificial intelligence
sas
scandinavian airlines
Probability Theory and Statistics
Sannolikhetsteori och statistik
Andersson, Martin
Mazouch, Marcus
Binary classification for predicting propensity to buy flight tickets. : A study on whether binary classification can be used to predict Scandinavian Airlines customers’ propensity to buy a flight ticket within the next seven days.
description A customers propensity to buy a certain product is a widely researched field and is applied in multiple industries. In this thesis it is showed that using binary classification on data from Scandinavian Airlines can predict their customers propensity to book a flight within the next coming seven days. A comparison between logistic regression and support vector machine is presented and logistic regression with reduced number of variables is chosen as the final model, due to it’s simplicity and accuracy. The explanatory variables contains exclusively booking history, whilst customer demographics and search history is showed to be insignificant. === En kunds benägenhet att göra ett visst köp är ett allmänt undersökt område som applicerats i flera olika branscher. I den här studien visas det att statistiska binära klassificeringsmodeller kan användas för att prediktera Scandinavian Airlines kunders benägenhet att köpa en resa de kommande sju dagarna. En jämförelse är presenterad mellan logistisk regression och stödvektormaskin och logistisk regression med reducerat antal parametrar väljs som den slutgiltiga modellen tack vare sin enkelhet och träffsäkerhet. De förklarande variablerna är uteslutande bokningshistorik medan kundens demografi och sökdata visas vara insignifikant.
author Andersson, Martin
Mazouch, Marcus
author_facet Andersson, Martin
Mazouch, Marcus
author_sort Andersson, Martin
title Binary classification for predicting propensity to buy flight tickets. : A study on whether binary classification can be used to predict Scandinavian Airlines customers’ propensity to buy a flight ticket within the next seven days.
title_short Binary classification for predicting propensity to buy flight tickets. : A study on whether binary classification can be used to predict Scandinavian Airlines customers’ propensity to buy a flight ticket within the next seven days.
title_full Binary classification for predicting propensity to buy flight tickets. : A study on whether binary classification can be used to predict Scandinavian Airlines customers’ propensity to buy a flight ticket within the next seven days.
title_fullStr Binary classification for predicting propensity to buy flight tickets. : A study on whether binary classification can be used to predict Scandinavian Airlines customers’ propensity to buy a flight ticket within the next seven days.
title_full_unstemmed Binary classification for predicting propensity to buy flight tickets. : A study on whether binary classification can be used to predict Scandinavian Airlines customers’ propensity to buy a flight ticket within the next seven days.
title_sort binary classification for predicting propensity to buy flight tickets. : a study on whether binary classification can be used to predict scandinavian airlines customers’ propensity to buy a flight ticket within the next seven days.
publisher Umeå universitet, Institutionen för matematik och matematisk statistik
publishDate 2019
url http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160855
work_keys_str_mv AT anderssonmartin binaryclassificationforpredictingpropensitytobuyflightticketsastudyonwhetherbinaryclassificationcanbeusedtopredictscandinavianairlinescustomerspropensitytobuyaflightticketwithinthenextsevendays
AT mazouchmarcus binaryclassificationforpredictingpropensitytobuyflightticketsastudyonwhetherbinaryclassificationcanbeusedtopredictscandinavianairlinescustomerspropensitytobuyaflightticketwithinthenextsevendays
AT anderssonmartin svensktitelbinarklassificeringappliceratpaattpredikterabenagenhetattkopaflygbiljetter
AT mazouchmarcus svensktitelbinarklassificeringappliceratpaattpredikterabenagenhetattkopaflygbiljetter
_version_ 1719234219607064576