Detecting Cardiac Pulsatility and Respiration using Multiband fMRI

Purpose: Arterial stiffening poses an increased risk of cerebrovascular diseases, cognitive impairments, and even dementia as cardiac pulsations reach further into the brain causing white matter hyperintensities and microbleeds. Therefore it is of interest to obtain methods to estimate and map cardi...

Full description

Bibliographic Details
Main Author: Jonsson, Joakim
Format: Others
Language:English
Published: Umeå universitet, Institutionen för fysik 2018
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149863
id ndltd-UPSALLA1-oai-DiVA.org-umu-149863
record_format oai_dc
collection NDLTD
language English
format Others
sources NDLTD
topic fMRI
multiband
cardiac pulsation
respiration
correlation analysis
neuroimaging
Medical Image Processing
Medicinsk bildbehandling
Neurosciences
Neurovetenskaper
spellingShingle fMRI
multiband
cardiac pulsation
respiration
correlation analysis
neuroimaging
Medical Image Processing
Medicinsk bildbehandling
Neurosciences
Neurovetenskaper
Jonsson, Joakim
Detecting Cardiac Pulsatility and Respiration using Multiband fMRI
description Purpose: Arterial stiffening poses an increased risk of cerebrovascular diseases, cognitive impairments, and even dementia as cardiac pulsations reach further into the brain causing white matter hyperintensities and microbleeds. Therefore it is of interest to obtain methods to estimate and map cardiac related pulsatility in the brain. Improvements of functional magnetic resonance imaging (fMRI) sequences is potentially allowing detection of rapid physiological processes in the echo-planar imaging (EPI) signal in the brainthrough a higher sampling rate. Specifically in this thesis, estimation and localization of cardiac pulsation and respiration is conducted through analysis of resting state data obtained with a multiband EPI sequence that permits whole brain imaging at a shorter repetition time (TR) than conventional EPI. The origin of these physiological signals are likely a mixture of inflow and compartment volume shifts during the cardiac- and respiratory cycles. As the amount of physiologically related signal in the multiband sequence used at the Biomedical Engineering Dept. R&D, Umeå University Hospital is unknown, the aim of this project is to find and map cardiac pulsatility and respiration for future research. Methods: Multiband fMRI data from 8 subjects was used, collected in a 3 Tesla scanner using a 32-channel head coil. The physiological signals were estimated through an algorithm that was developed to down-sample and temporally shift copies of simultaneous recordings of pulse and respiration. These signals were obtained using the scanner’s built-in pulse oximeter and a respiration belt. The shifted copies were voxel-wise, and slice by slice, correlated to the fMRI data using Pearson correlation. The time shift yielding maximum mean correlation within the brain was, for each slice, used to create statistical maps for significant voxels to show the localization and magnitude of correlation for cardiac pulsation andrespiration. Results: Many voxels around and nearby larger vessels and ventricles were highly correlated with the down-sampled, time shifted signals of the cardiac pulsation for all subjects. The cardiac pulsation maps resembled cerebral vasculature and were mostly localized around the Circle of Willis, brainstem, and the ventricles. Respiration signal was also highly correlated, and spatially located at the sides of the brain although mostly concentrated at the parietal- and occipital lobes. Conclusion: The results demonstrated that many voxels in the brain were highly correlated with cardiac pulsation and respiration using multiband EPI, and the statistical maps revealed distinct patterns for both of the physiological signals. This method and results for mapping cardiac related pulsatility, and respiration could be used for future research in order to better understand cerebral diseases and impairments, and alsoto improve fMRI filtering. Keywords: Arterial stiffness, Functional magnetic resonance imaging, Resting state, Multiband, CardiacPulsation, Respiration, Correlation analysis === Syfte: Arteriell förstyvning medför en ökad risk för cerebrovaskulära sjukdomar, kognitiva störningar och till och med demens då hjärtpulsationer når längre in i hjärnan orsakar vit materia hyperintensiteter och mikroblödningar. Av detta skäl är det därför av intresse att ta fram metoder för att estimera och kartlägga hjärtrelaterad pulsationer i hjärnan. Förbättringar av funktionella magnetresonanstomografi (fMRI) sekvenser kan möjliggöra detektering av snabba fysiologiska processer i den eko-planära (EPI) signalen i hjärnan genom en högre samplingsfrekvens. Specifikt i denna uppsats, utförs en skattning och lokalisering av hjärtpulsation och respiration genom analys av ’resting state’ data erhållet av en multiband-EPI sekvens som tillåter bildgivning av hela hjärnan med en kortare repetitionstid (TR) än konventionell EPI. Ursprunget avdessa fysiologiska signaler är sannolikt från en blandning av flöde- och volymsförändringar under hjärt- och respirationscyklerna. Då mängden av fysiologiskt relaterad signaler i multiband sekvensen, som används på Biomedicinska avdelningen, FoU Umeå Universitetssjukhust, är okänd så är målet med projektet att hitta och kartlägga hjärtpulsation och respiration för framtida forskning. Metod: Multiband fMRI data från 8 personer användes, insamlade från en 3 Tesla scanner med en 32-kanals huvudspole. De fysiologiska signalerna uppskattades genom en algoritm som utveckades för att sampla ned och tidsförskjuta kopior av simultant tagna signaler av puls och respiration. Dessa signaler samlades in med skannerns inbyggda pulsoximeter och andningsband. De förskjutna kopiorna var voxelvis, snitt för snitt, korrelerade med fMRI datat med användning av Pearson-korrelation. Det tidsskift somför varje snitt resulterade i maximal medelkorrelation i hjärnan användes för att skapa statistiska kartor, med endast signifikanta voxlar, för att visa var och hur mycket korrelation av hjärtpulsation och respiration som finns. Resultat: Många voxlar runt och nära större kärl och ventriklar var för alla personer starkt korrelerade medde samtidigt tagna, och tidsförskjutna signalerna av hjärtpulsation. Pulsationskartorna liknade cerebral vaskulatur och var mestadels lokaliserade kring Willis ring, hjärnstammen och ventriklar. Respirationssignalen var även starkt korrelerad och lokaliserad på sidorna av hjärnan, mestadels koncentrerat vid parietal- och occipital loberna. Slutsats: Resultaten visade att många voxlar i hjärnan var starkt korrelerade med hjärtpulsation och respiration vid användning av multiband EPI, och de statistiska kartorna avslöjade distinkta mönster för de båda fysiologiska signalerna. Den framtagna metoden och dess resultat för kartläggning av hjärtrelaterade pulsationer och respiration kan användas i framtida forskning i syfte att bättre förstå cerebrala sjukdomar och nedsättning, även för att förbättre fMRI filtrering. Nyckelord: Arteriell förstyvning, Funktionell magnetresonanstomografi, Resting state, Multiband, Hjärtpulsation, Andning, Korrelationsanalys
author Jonsson, Joakim
author_facet Jonsson, Joakim
author_sort Jonsson, Joakim
title Detecting Cardiac Pulsatility and Respiration using Multiband fMRI
title_short Detecting Cardiac Pulsatility and Respiration using Multiband fMRI
title_full Detecting Cardiac Pulsatility and Respiration using Multiband fMRI
title_fullStr Detecting Cardiac Pulsatility and Respiration using Multiband fMRI
title_full_unstemmed Detecting Cardiac Pulsatility and Respiration using Multiband fMRI
title_sort detecting cardiac pulsatility and respiration using multiband fmri
publisher Umeå universitet, Institutionen för fysik
publishDate 2018
url http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149863
work_keys_str_mv AT jonssonjoakim detectingcardiacpulsatilityandrespirationusingmultibandfmri
_version_ 1719492068810686464
spelling ndltd-UPSALLA1-oai-DiVA.org-umu-1498632021-11-02T05:31:42ZDetecting Cardiac Pulsatility and Respiration using Multiband fMRIengJonsson, JoakimUmeå universitet, Institutionen för fysik2018fMRImultibandcardiac pulsationrespirationcorrelation analysisneuroimagingMedical Image ProcessingMedicinsk bildbehandlingNeurosciencesNeurovetenskaperPurpose: Arterial stiffening poses an increased risk of cerebrovascular diseases, cognitive impairments, and even dementia as cardiac pulsations reach further into the brain causing white matter hyperintensities and microbleeds. Therefore it is of interest to obtain methods to estimate and map cardiac related pulsatility in the brain. Improvements of functional magnetic resonance imaging (fMRI) sequences is potentially allowing detection of rapid physiological processes in the echo-planar imaging (EPI) signal in the brainthrough a higher sampling rate. Specifically in this thesis, estimation and localization of cardiac pulsation and respiration is conducted through analysis of resting state data obtained with a multiband EPI sequence that permits whole brain imaging at a shorter repetition time (TR) than conventional EPI. The origin of these physiological signals are likely a mixture of inflow and compartment volume shifts during the cardiac- and respiratory cycles. As the amount of physiologically related signal in the multiband sequence used at the Biomedical Engineering Dept. R&D, Umeå University Hospital is unknown, the aim of this project is to find and map cardiac pulsatility and respiration for future research. Methods: Multiband fMRI data from 8 subjects was used, collected in a 3 Tesla scanner using a 32-channel head coil. The physiological signals were estimated through an algorithm that was developed to down-sample and temporally shift copies of simultaneous recordings of pulse and respiration. These signals were obtained using the scanner’s built-in pulse oximeter and a respiration belt. The shifted copies were voxel-wise, and slice by slice, correlated to the fMRI data using Pearson correlation. The time shift yielding maximum mean correlation within the brain was, for each slice, used to create statistical maps for significant voxels to show the localization and magnitude of correlation for cardiac pulsation andrespiration. Results: Many voxels around and nearby larger vessels and ventricles were highly correlated with the down-sampled, time shifted signals of the cardiac pulsation for all subjects. The cardiac pulsation maps resembled cerebral vasculature and were mostly localized around the Circle of Willis, brainstem, and the ventricles. Respiration signal was also highly correlated, and spatially located at the sides of the brain although mostly concentrated at the parietal- and occipital lobes. Conclusion: The results demonstrated that many voxels in the brain were highly correlated with cardiac pulsation and respiration using multiband EPI, and the statistical maps revealed distinct patterns for both of the physiological signals. This method and results for mapping cardiac related pulsatility, and respiration could be used for future research in order to better understand cerebral diseases and impairments, and alsoto improve fMRI filtering. Keywords: Arterial stiffness, Functional magnetic resonance imaging, Resting state, Multiband, CardiacPulsation, Respiration, Correlation analysis Syfte: Arteriell förstyvning medför en ökad risk för cerebrovaskulära sjukdomar, kognitiva störningar och till och med demens då hjärtpulsationer når längre in i hjärnan orsakar vit materia hyperintensiteter och mikroblödningar. Av detta skäl är det därför av intresse att ta fram metoder för att estimera och kartlägga hjärtrelaterad pulsationer i hjärnan. Förbättringar av funktionella magnetresonanstomografi (fMRI) sekvenser kan möjliggöra detektering av snabba fysiologiska processer i den eko-planära (EPI) signalen i hjärnan genom en högre samplingsfrekvens. Specifikt i denna uppsats, utförs en skattning och lokalisering av hjärtpulsation och respiration genom analys av ’resting state’ data erhållet av en multiband-EPI sekvens som tillåter bildgivning av hela hjärnan med en kortare repetitionstid (TR) än konventionell EPI. Ursprunget avdessa fysiologiska signaler är sannolikt från en blandning av flöde- och volymsförändringar under hjärt- och respirationscyklerna. Då mängden av fysiologiskt relaterad signaler i multiband sekvensen, som används på Biomedicinska avdelningen, FoU Umeå Universitetssjukhust, är okänd så är målet med projektet att hitta och kartlägga hjärtpulsation och respiration för framtida forskning. Metod: Multiband fMRI data från 8 personer användes, insamlade från en 3 Tesla scanner med en 32-kanals huvudspole. De fysiologiska signalerna uppskattades genom en algoritm som utveckades för att sampla ned och tidsförskjuta kopior av simultant tagna signaler av puls och respiration. Dessa signaler samlades in med skannerns inbyggda pulsoximeter och andningsband. De förskjutna kopiorna var voxelvis, snitt för snitt, korrelerade med fMRI datat med användning av Pearson-korrelation. Det tidsskift somför varje snitt resulterade i maximal medelkorrelation i hjärnan användes för att skapa statistiska kartor, med endast signifikanta voxlar, för att visa var och hur mycket korrelation av hjärtpulsation och respiration som finns. Resultat: Många voxlar runt och nära större kärl och ventriklar var för alla personer starkt korrelerade medde samtidigt tagna, och tidsförskjutna signalerna av hjärtpulsation. Pulsationskartorna liknade cerebral vaskulatur och var mestadels lokaliserade kring Willis ring, hjärnstammen och ventriklar. Respirationssignalen var även starkt korrelerad och lokaliserad på sidorna av hjärnan, mestadels koncentrerat vid parietal- och occipital loberna. Slutsats: Resultaten visade att många voxlar i hjärnan var starkt korrelerade med hjärtpulsation och respiration vid användning av multiband EPI, och de statistiska kartorna avslöjade distinkta mönster för de båda fysiologiska signalerna. Den framtagna metoden och dess resultat för kartläggning av hjärtrelaterade pulsationer och respiration kan användas i framtida forskning i syfte att bättre förstå cerebrala sjukdomar och nedsättning, även för att förbättre fMRI filtrering. Nyckelord: Arteriell förstyvning, Funktionell magnetresonanstomografi, Resting state, Multiband, Hjärtpulsation, Andning, Korrelationsanalys Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149863application/pdfinfo:eu-repo/semantics/openAccess