Multi-platform metabolomics assays to study the responsiveness of the human plasma and lung lavage metabolome
Metabolomics as a field has been used to track changes and perturbations in the human body by investigating metabolite profiles indicating the change of metabolite levels over time and in response to different challenges. In this thesis work, the main focus was on applying multiplatform-metabolomics...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Umeå universitet, Kemiska institutionen
2016
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-120591 http://nbn-resolving.de/urn:isbn:978-91-7601-506-3 |
Summary: | Metabolomics as a field has been used to track changes and perturbations in the human body by investigating metabolite profiles indicating the change of metabolite levels over time and in response to different challenges. In this thesis work, the main focus was on applying multiplatform-metabolomics to study the human metabolome following exposure to perturbations, such as diet (in the form of a challenge meal) and exhaust emissions (air pollution exposure in a controlled setting). The cutting-edge analytical platforms used for this purpose were nuclear magnetic resonance (NMR), as well as gas chromatography (GC) and liquid chromatography (LC) coupled to mass spectrometry (MS). Each platform offered unique characterization features, allowing detection and identification of a specific range of metabolites. The use of multiplatform-metabolomics was found to enhance the metabolome coverage and to provide complementary findings that enabled a better understanding of the biochemical processes reflected by the metabolite profiles. Using non-targeted analysis, a wide range of unknown metabolites in plasma were identified during the postprandial stage after a well-defined challenge meal (in Paper I). In addition, a considerable number of metabolites were detected and identified in lung lavage fluid after biodiesel exhaust exposure compared to filtered air exposure (in Paper II). In parallel, using targeted analysis, both lung lavage and plasma fatty acid metabolites were detected and quantified in response to filtered air and biodiesel exhaust exposure (in Paper III and IV). Data processing of raw data followed by data analysis, using both univariate and multivariate methods, enabled changes occurring in metabolites levels to be screened and investigated. For the initial pilot postprandial study, the aim was to investigate the plasma metabolome response after a well-defined meal during the postprandial stage for two types of diet. It was found that independent of the background diet type, levels of metabolites returned to their baseline levels after three hours. This finding was taken into consideration for the biodiesel exhaust exposures studies, designed to limit the impact of dietary effects. Both targeted and non-targeted approaches resulted in important findings. For instance, different metabolite profiles were detected in bronchial wash (BW) compared to bronchoalveolar lavage (BAL) fluid with mainly NMR and LC-MS. Furthermore, biodiesel exhaust exposure resulted in different metabolite profiles as observed by GC-MS, especially in BAL. In addition, fatty acid metabolites in BW, BAL, and plasma were shown to be responsive to biodiesel exhaust exposure, as measured by a targeted LC-MS/MS protocol. In summary, the new analytical methods developed to investigate the responsiveness of the human plasma and lung lavage metabolome proved to be useful in an analytical perspective, and provided important biological findings. However, further studies are needed to validate these results. === Metabolomik har använts för att spåra förändringar och störningar i kroppens funktioner genom undersökning av metabolit-profiler. I detta avhandlingasarbete har huvudfokus varit på tillämpning av flera olika analytiska plattformar för metabolomikstudier av det mänskliga metabolomet efter exponering för olika kost och avgasutsläpp från biodieselbränsle. De sofistikerade analytiska plattformarna som användes för detta ändamål var kärnmagnetisk resonans (NMR), samt gaskromatografi (GC) och vätskekromatografi (LC) kopplat till masspektrometri (MS). Varje plattform erbjöd unika karakteriseringsmöjligheter med detektion och identifiering av specifika grupper av metaboliter. Användningen av multipattformmetabolomik förbättrade täckningen av metabolomet och genererade kompletterande resultat som möjliggjorde en bättre förståelse av de biokemiska processer som reflekteras av metabolitprofilerna. Med hjälp av breda analyser har ett stort antal okända metaboliter i plasma identifierats under den postprandial fasen efter en väldefinerad måltid (i Paper I). Dessutom har ett stort antal metaboliter påvisats och identifierats i lungsköljvätska efter exponering av biodieselavgaser jämfört med kontollexponering med filtrerad luft (i Paper II). Parallellt med dessa breda analyser har också riktade analyser genomförts av både lungsköljvätska och plasma. Därigenom har bioaktiva lipider detekterats och kvantifieras efter avgasexponering och resultaten har jämförts med filtrerad luft som kontrollexponering (Paper III och IV). Processning av rådata följt av dataanalys, med både univariata och multivariata metoder möjliggjorde screening och fördjupad undersökning av förändringen i metabolitnivåer. I den första pilotstudien av postprandiala nivåer var syftet att undersöka responsen i plasmametabolomet efter en väldefinierad måltid under den postprandiala fasen vid två olika typer av kost. Resultaten visade att oberoende av kosten, så återvände metabolitnivåerna till sina baslinjenivåer tre timmar efter måltiden. Detta togs i beaktande vid exponeringsstudierna för biodieselavgaser, som designades så att dietens inverkan minimerades. Både breda och riktade analyser resulterade i viktiga resultat. Exempelvis så detekterades olika metabolitprofiler i bronkiell sköljvätska (BW) jämfört med bronkoalveolär sköljvätska (BAL), speciellt med NMR och LC-MS. Dessutom resulterade avgasexponering i förändrade metabolitprofiler, observerade med GC-MS, särskilt i BAL. Dessutom uppvisade fettsyrametaboliter i BW, BAL och plasma förändrade halter efter avgasexponering, uppmätt genom en riktad LC-MS/MS-analys. Sammanfattningsvis så visade sig de nya metoderna som utvecklats för att undersöka förändringar i metabolithalterna i plasma och lungsköljvätska fungera väl ur ett analytiskt perspektiv och resulterade i viktiga biologiska fynd. Fördjupade studier behövs dock för att validera resultaten. |
---|