Rening av lakvatten vid deponin Degermyran i Skellefteå kommun : Utvärdering av nuvarande reningseffekt och simulering av mängden bildat lakvatten under 2000-talets klimatförändringar

At Degermyran landfill, situated in the municipal Skellefteå, a leachate treatment system was installed in 2005. One of the aims of this study was to investigate how well the treatment system works by using data from chemical measurements made on the leachate before and after treatment. Further this...

Full description

Bibliographic Details
Main Author: Vinterek, Sebastian
Format: Others
Language:Swedish
Published: Umeå universitet, Institutionen för ekologi, miljö och geovetenskap 2015
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-104070
Description
Summary:At Degermyran landfill, situated in the municipal Skellefteå, a leachate treatment system was installed in 2005. One of the aims of this study was to investigate how well the treatment system works by using data from chemical measurements made on the leachate before and after treatment. Further this study had the purpose of investigating how the predicted climate changes of the 21st century will affect the amount of leachate generated at Degermyran by using a modified version of Thornthwaites water balance model. The treatment system has the ability of reducing manganese by 90 %, nitrogen by 73 % och TOC by 79 %. By the turn of this century the amount of precipitation that percolates the waste at Degermyran will be between 254 and 298 mm, depending on the amount of greenhouse gases that will be released in the future to come. The conclusions from this study are that the leachate treatment system reduces the levels of the investigated substances and that the amount of leachate produced at Degermyran will increase. To further investigate the efficiency of the leachate treatment system, flow proportionate measurements of the leachate chemistry could be adopted. If accurate flow measurements of the amount of generated leachate were performed the reliability of the used water balance model could be assessed.