New Tools for Trapping and Separation in Gas Chromatography and Dielectrophoresis : Improved Performance by Aid of Computer Simulation

Computer simulations can be useful aids for both developing new analytical methods and enhancing the performance of existing techniques. This thesis is based on studies in which computer simulations were key elements in the development of several new tools for use in gas chromatography and dielectro...

Full description

Bibliographic Details
Main Author: Aldaeus, Fredrik
Format: Doctoral Thesis
Language:English
Published: Stockholms universitet, Institutionen för analytisk kemi 2007
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7170
http://nbn-resolving.de/urn:isbn:978-91-7155-526-7
id ndltd-UPSALLA1-oai-DiVA.org-su-7170
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-su-71702013-01-08T13:04:35ZNew Tools for Trapping and Separation in Gas Chromatography and Dielectrophoresis : Improved Performance by Aid of Computer SimulationengAldaeus, FredrikStockholms universitet, Institutionen för analytisk kemiStockholm : Institutionen för analytisk kemi2007gas chromatographydielectrophoresiscomputer simulationfinite element methodtrappingseparationlab-on-a-chipAnalytical chemistryAnalytisk kemiComputer simulations can be useful aids for both developing new analytical methods and enhancing the performance of existing techniques. This thesis is based on studies in which computer simulations were key elements in the development of several new tools for use in gas chromatography and dielectrophoresis. In gas chromatography, gaseous analytes are separated by exploiting differences in their partitioning between different phases, and after their partitioning parameters have been determined the separations can be computationally predicted, and optimized, for a wide range of operating conditions. Similarly, in dielectrophoresis, particles with differing polarizability or size can be separated, and since particle trajectories within a separation device can be predicted using computations, the suitability of new designs, applications of forces and combinations of operational parameters can be assessed without necessarily making or empirically testing all of the variants. Using two existing numerical methods combined with semi-empirical determinations of retention behavior, temperature-programmed gas chromatograms were predicted with less than one percent deviations from experimental data, and a new method for improving the capacity of a gas-trapping device was predicted and experimentally verified. In addition, two new concepts with potential capacity to enhance dielectrophoretic separations were developed and tested in simulations. The first provides a promising way to improve the trapping of bacteria in media with elevated conductivity by using super-positioned electric fields, and the second a way to increase selectivity in the separation of bio-particles by using multiple dielectrophoretic cycles. The studies also introduced a more accurate method for determining the conductivity of suspensions of bacteria, and a new computational method for determining the dielectrophoretic behavior of particles in concentrated suspensions. The scientific studies are summarized and discussed in the main text of this thesis, and presented in detail in seven appended papers. Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7170urn:isbn:978-91-7155-526-7application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic gas chromatography
dielectrophoresis
computer simulation
finite element method
trapping
separation
lab-on-a-chip
Analytical chemistry
Analytisk kemi
spellingShingle gas chromatography
dielectrophoresis
computer simulation
finite element method
trapping
separation
lab-on-a-chip
Analytical chemistry
Analytisk kemi
Aldaeus, Fredrik
New Tools for Trapping and Separation in Gas Chromatography and Dielectrophoresis : Improved Performance by Aid of Computer Simulation
description Computer simulations can be useful aids for both developing new analytical methods and enhancing the performance of existing techniques. This thesis is based on studies in which computer simulations were key elements in the development of several new tools for use in gas chromatography and dielectrophoresis. In gas chromatography, gaseous analytes are separated by exploiting differences in their partitioning between different phases, and after their partitioning parameters have been determined the separations can be computationally predicted, and optimized, for a wide range of operating conditions. Similarly, in dielectrophoresis, particles with differing polarizability or size can be separated, and since particle trajectories within a separation device can be predicted using computations, the suitability of new designs, applications of forces and combinations of operational parameters can be assessed without necessarily making or empirically testing all of the variants. Using two existing numerical methods combined with semi-empirical determinations of retention behavior, temperature-programmed gas chromatograms were predicted with less than one percent deviations from experimental data, and a new method for improving the capacity of a gas-trapping device was predicted and experimentally verified. In addition, two new concepts with potential capacity to enhance dielectrophoretic separations were developed and tested in simulations. The first provides a promising way to improve the trapping of bacteria in media with elevated conductivity by using super-positioned electric fields, and the second a way to increase selectivity in the separation of bio-particles by using multiple dielectrophoretic cycles. The studies also introduced a more accurate method for determining the conductivity of suspensions of bacteria, and a new computational method for determining the dielectrophoretic behavior of particles in concentrated suspensions. The scientific studies are summarized and discussed in the main text of this thesis, and presented in detail in seven appended papers.
author Aldaeus, Fredrik
author_facet Aldaeus, Fredrik
author_sort Aldaeus, Fredrik
title New Tools for Trapping and Separation in Gas Chromatography and Dielectrophoresis : Improved Performance by Aid of Computer Simulation
title_short New Tools for Trapping and Separation in Gas Chromatography and Dielectrophoresis : Improved Performance by Aid of Computer Simulation
title_full New Tools for Trapping and Separation in Gas Chromatography and Dielectrophoresis : Improved Performance by Aid of Computer Simulation
title_fullStr New Tools for Trapping and Separation in Gas Chromatography and Dielectrophoresis : Improved Performance by Aid of Computer Simulation
title_full_unstemmed New Tools for Trapping and Separation in Gas Chromatography and Dielectrophoresis : Improved Performance by Aid of Computer Simulation
title_sort new tools for trapping and separation in gas chromatography and dielectrophoresis : improved performance by aid of computer simulation
publisher Stockholms universitet, Institutionen för analytisk kemi
publishDate 2007
url http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7170
http://nbn-resolving.de/urn:isbn:978-91-7155-526-7
work_keys_str_mv AT aldaeusfredrik newtoolsfortrappingandseparationingaschromatographyanddielectrophoresisimprovedperformancebyaidofcomputersimulation
_version_ 1716508100685463552