Summary: | Word sense disambiguation (WSD) is the process of computationally identifying and labeling poly- semous words in context with their correct meaning, known as a sense. WSD is riddled with various obstacles that must be overcome in order to reach its full potential. One of these problems is the aspect of the representation of word meaning. Traditional WSD algorithms make the assumption that a word in a given context has only one meaning and therfore can return only one discrete sense. On the other hand, a novel approach is that a given word can have multiple senses. Studies on graded word sense assignment (Erk et al., 2009) as well as in cognitive science (Hampton, 2007; Murphy, 2002) support this theory. It has therefore been adopted in a novel, paraphrasing system which performs word sense disambiguation by returning a probability distribution over potential paraphrases (in this case synonyms) of a given word. However, it is unknown how well this type of algorithm fares against the traditional one. The current study thus examines if and how it is possible to make a comparison of the two. A method of comparison is evaluated and subsequently rejected. Reasons for this as well as suggestions for a fair and accurate comparison are presented.
|