Characterization of RNA exosome in Insect Cells : Role in mRNA Surveillance

The exosome, an evolutionarily conserved protein complex with exoribonucleolytic activity, is one of the key players in mRNA quality control. Little is known about the functions of the exosome in metazoans. We have studied the role of the exosome in nuclear mRNA surveillance using Chironomus tentans...

Full description

Bibliographic Details
Main Author: Hessle, Viktoria
Format: Doctoral Thesis
Language:English
Published: Stockholms universitet, Institutionen för molekylärbiologi och funktionsgenomik 2011
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-52127
http://nbn-resolving.de/urn:isbn:978-91-7447-208-0
Description
Summary:The exosome, an evolutionarily conserved protein complex with exoribonucleolytic activity, is one of the key players in mRNA quality control. Little is known about the functions of the exosome in metazoans. We have studied the role of the exosome in nuclear mRNA surveillance using Chironomus tentans and Drosophila melanogaster as model systems. Studies of the exosome subunits Rrp4 and Rrp6 revealed that both proteins are associated with transcribed genes and nascent pre-mRNPs in C. tentans. We have shown that several exosome subunits interact in vivo with the mRNA-binding protein Hrp59/hnRNP M, and that depleting Hrp59 in D. melanogaster S2 cells by RNAi leads to reduced levels of Rrp4 at the transcription sites. Our results on Rrp4 suggest a model for cotranscriptional quality control in which the exosome is constantly recruited to nascent mRNAs through interactions with specific hnRNP proteins. Moreover, we show that Rrp6 interacts with mRNPs in transit from the gene to the nuclear pore complex, where it is released during early stages of nucleo-cytoplasmic translocation. Furthermore, we show that Rrp6 is enriched in discrete nuclear bodies in the salivary glands of C. tentans and D. melanogaster. In C. tentans, the Rrp6-rich nuclear bodies colocalize with SUMO. We have also constructed D. melanogaster S2 cells expressing human b-globin genes, with either wild type of mutated splice sites, and we have studied the mechanisms by which the cells react to pre-mRNA processing defects. Our results indicate that two surveillance responses operate co-transcriptionally in S2 cells. One requires Rrp6 and retains defective mRNAs at the transcription site. The other one reduces the synthesis of the defective transcripts through a mechanism that involves histone modifications. These observations support the view that multiple mechanisms contribute to co-transcriptional surveillance in insects. === At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.