The Square-Root Isometry of Coupled Quadratic Spaces : On the relation between vielbein and metric formulations of spin-2 interactions
Bimetric theory is an extension to general relativity that introduces a secondary symmetric rank-two tensor field. This secondary spin-2 field is also dynamical, and to avoid the Boulware-Deser ghost issue, the interaction between the two fields is obtained through a potential that involes the matri...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Stockholms universitet, Fysikum
2014
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-114809 |
id |
ndltd-UPSALLA1-oai-DiVA.org-su-114809 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UPSALLA1-oai-DiVA.org-su-1148092016-12-03T05:13:56ZThe Square-Root Isometry of Coupled Quadratic Spaces : On the relation between vielbein and metric formulations of spin-2 interactionsengMikica B., KocicStockholms universitet, FysikumStockholms universitet, Oskar Klein-centrum för kosmopartikelfysik (OKC)2014modified gravitybigravitybimetric theorysquare-root isometryBimetric theory is an extension to general relativity that introduces a secondary symmetric rank-two tensor field. This secondary spin-2 field is also dynamical, and to avoid the Boulware-Deser ghost issue, the interaction between the two fields is obtained through a potential that involes the matrix square-root of the tensors. This square-root “quantity” is a linear transformation, herein referred to as the square-root isometry. In this work we explore the conditions for the existence of the square-root isometry and its group properties. Morever we study the conditions for the simultaneous 3+1 decomposition of two fields, and then, in terms of null-cones, give the (local) causal relations between fields coupled by the square-root isometry. Finally, we show the algebraic equivalency of bimetric theory and its vielbein formulation up to a one-to-one map relating the respective parameter spaces over the real numbers. Den bimetriska teorin är en utökning av den allmänna relativitetsteorin som introducerar ett sekundärt symmetriskt tensorfält av rang-två. Det här sekundära spin-2 fältet är också dynamiskt, och för att undvika Boulware-Deser spöke, erhålls vaxelverkan mellan de två fältena genom en potential som er baserad på kvadratrotsmatris av två tensorfält. Den “kvadratroten” är en linjär avbildning som kallas kvadratrotsisometri. I detta arbete utforskas förutsättningar för existensen av kvadratrotsisometrin och ges dess egenskaper i termer av gruppteori. Därutöver utforskas förutsättningarna för den samtidiga 3+1 dekompositionen av två tensorfält och sedan, i termer av ljuskoner, ges de (lokala) kausala relationerna för tensorfält kopplade genom kvadratrotsisometrin. Slutligen bevisas den algebraiska ekvivalensen mellan den bimetriska teorin och dess vielbein formulering upp till en bijektiv relation mellan respektive parameterutrymmen över de reella talen. <p>Summarizes the results from the project done between March 2014 and November 2014.</p>Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-114809application/pdfinfo:eu-repo/semantics/openAccess |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
modified gravity bigravity bimetric theory square-root isometry |
spellingShingle |
modified gravity bigravity bimetric theory square-root isometry Mikica B., Kocic The Square-Root Isometry of Coupled Quadratic Spaces : On the relation between vielbein and metric formulations of spin-2 interactions |
description |
Bimetric theory is an extension to general relativity that introduces a secondary symmetric rank-two tensor field. This secondary spin-2 field is also dynamical, and to avoid the Boulware-Deser ghost issue, the interaction between the two fields is obtained through a potential that involes the matrix square-root of the tensors. This square-root “quantity” is a linear transformation, herein referred to as the square-root isometry. In this work we explore the conditions for the existence of the square-root isometry and its group properties. Morever we study the conditions for the simultaneous 3+1 decomposition of two fields, and then, in terms of null-cones, give the (local) causal relations between fields coupled by the square-root isometry. Finally, we show the algebraic equivalency of bimetric theory and its vielbein formulation up to a one-to-one map relating the respective parameter spaces over the real numbers. === Den bimetriska teorin är en utökning av den allmänna relativitetsteorin som introducerar ett sekundärt symmetriskt tensorfält av rang-två. Det här sekundära spin-2 fältet är också dynamiskt, och för att undvika Boulware-Deser spöke, erhålls vaxelverkan mellan de två fältena genom en potential som er baserad på kvadratrotsmatris av två tensorfält. Den “kvadratroten” är en linjär avbildning som kallas kvadratrotsisometri. I detta arbete utforskas förutsättningar för existensen av kvadratrotsisometrin och ges dess egenskaper i termer av gruppteori. Därutöver utforskas förutsättningarna för den samtidiga 3+1 dekompositionen av två tensorfält och sedan, i termer av ljuskoner, ges de (lokala) kausala relationerna för tensorfält kopplade genom kvadratrotsisometrin. Slutligen bevisas den algebraiska ekvivalensen mellan den bimetriska teorin och dess vielbein formulering upp till en bijektiv relation mellan respektive parameterutrymmen över de reella talen. === <p>Summarizes the results from the project done between March 2014 and November 2014.</p> |
author |
Mikica B., Kocic |
author_facet |
Mikica B., Kocic |
author_sort |
Mikica B., Kocic |
title |
The Square-Root Isometry of Coupled Quadratic Spaces : On the relation between vielbein and metric formulations of spin-2 interactions |
title_short |
The Square-Root Isometry of Coupled Quadratic Spaces : On the relation between vielbein and metric formulations of spin-2 interactions |
title_full |
The Square-Root Isometry of Coupled Quadratic Spaces : On the relation between vielbein and metric formulations of spin-2 interactions |
title_fullStr |
The Square-Root Isometry of Coupled Quadratic Spaces : On the relation between vielbein and metric formulations of spin-2 interactions |
title_full_unstemmed |
The Square-Root Isometry of Coupled Quadratic Spaces : On the relation between vielbein and metric formulations of spin-2 interactions |
title_sort |
square-root isometry of coupled quadratic spaces : on the relation between vielbein and metric formulations of spin-2 interactions |
publisher |
Stockholms universitet, Fysikum |
publishDate |
2014 |
url |
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-114809 |
work_keys_str_mv |
AT mikicabkocic thesquarerootisometryofcoupledquadraticspacesontherelationbetweenvielbeinandmetricformulationsofspin2interactions AT mikicabkocic squarerootisometryofcoupledquadraticspacesontherelationbetweenvielbeinandmetricformulationsofspin2interactions |
_version_ |
1718399163037646848 |