Oligonucleotide Complexes with Cell-Penetrating Peptides : Structure, Binding, Translocation and Flux in Lipid Membranes

The ability of cell-penetrating peptides to cross plasma membranes has been explored for various applications, including the delivery of bioactive molecules to inhibit disease-causing cellular processes. The uptake mechanisms by which cell-penetrating peptides enter cells depend on the conditions, s...

Full description

Bibliographic Details
Main Author: Ferreira Vasconcelos, Luis Daniel
Format: Others
Language:English
Published: Stockholms universitet, Institutionen för neurokemi 2014
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-109299
http://nbn-resolving.de/urn:isbn:978-91-7649-029-7
id ndltd-UPSALLA1-oai-DiVA.org-su-109299
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-su-1092992015-03-18T05:05:27ZOligonucleotide Complexes with Cell-Penetrating Peptides : Structure, Binding, Translocation and Flux in Lipid MembranesengFerreira Vasconcelos, Luis DanielStockholms universitet, Institutionen för neurokemiStockholm : Department of Neurochemistry, Stockholm University2014Cell-penetrating peptideLarge unilamellar vesicleMembrane perturbationEndosomal escapeThe ability of cell-penetrating peptides to cross plasma membranes has been explored for various applications, including the delivery of bioactive molecules to inhibit disease-causing cellular processes. The uptake mechanisms by which cell-penetrating peptides enter cells depend on the conditions, such as the cell line the concentration and the temperature. To be used as therapeutics, each novel cell-penetrating peptide needs to be fully characterized, including their physicochemical properties, their biological activity and their uptake mechanism. Our group has developed a series of highly performing, non-toxic cell-penetrating peptides, all derived from the original sequence of transportan 10. These analogs are called PepFects and NickFects and they are now a diverse family of N-terminally stearylated peptides. These peptides are known to form noncovalent, nano-sized complexes with diverse oligonucleotide cargoes. One bottleneck that limits the use of this technology for gene therapy applications is the efficient release of the internalized complexes from endosomal vesicles. The general purpose of this thesis is to reveal the mechanisms by which our in house designed peptides enter cells and allow the successful transport of biofunctional oligonucleotide cargo. To reach this goal, we used both biophysical and cell biology methods. We used spectroscopy methods, including fluorescence, circular dichroism and dynamic light scattering to reveal the physicochemical properties. Using confocal and transmission electron microscopy we observed and tracked the internalization and intracellular trafficking. Additionally we tested the biological activity in vitro and the cellular toxicity of the delivery systems. We conclude that the transport vectors involved in this study are efficient at perturbing lipid membranes, which correlates with their remarkable capacity to transport oligonucleotides into cells. The improved and distinct capacities to escape from endosomal vesicles can be the result of their different structures and hydrophobicity. These findings extend the knowledge of the variables that condition intracellular Cell-penetrating peptide mediated transport of nucleic acids, which ultimately translates into a small step towards successful non-viral gene therapy. Licentiate thesis, comprehensive summaryinfo:eu-repo/semantics/masterThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-109299urn:isbn:978-91-7649-029-7application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Others
sources NDLTD
topic Cell-penetrating peptide
Large unilamellar vesicle
Membrane perturbation
Endosomal escape
spellingShingle Cell-penetrating peptide
Large unilamellar vesicle
Membrane perturbation
Endosomal escape
Ferreira Vasconcelos, Luis Daniel
Oligonucleotide Complexes with Cell-Penetrating Peptides : Structure, Binding, Translocation and Flux in Lipid Membranes
description The ability of cell-penetrating peptides to cross plasma membranes has been explored for various applications, including the delivery of bioactive molecules to inhibit disease-causing cellular processes. The uptake mechanisms by which cell-penetrating peptides enter cells depend on the conditions, such as the cell line the concentration and the temperature. To be used as therapeutics, each novel cell-penetrating peptide needs to be fully characterized, including their physicochemical properties, their biological activity and their uptake mechanism. Our group has developed a series of highly performing, non-toxic cell-penetrating peptides, all derived from the original sequence of transportan 10. These analogs are called PepFects and NickFects and they are now a diverse family of N-terminally stearylated peptides. These peptides are known to form noncovalent, nano-sized complexes with diverse oligonucleotide cargoes. One bottleneck that limits the use of this technology for gene therapy applications is the efficient release of the internalized complexes from endosomal vesicles. The general purpose of this thesis is to reveal the mechanisms by which our in house designed peptides enter cells and allow the successful transport of biofunctional oligonucleotide cargo. To reach this goal, we used both biophysical and cell biology methods. We used spectroscopy methods, including fluorescence, circular dichroism and dynamic light scattering to reveal the physicochemical properties. Using confocal and transmission electron microscopy we observed and tracked the internalization and intracellular trafficking. Additionally we tested the biological activity in vitro and the cellular toxicity of the delivery systems. We conclude that the transport vectors involved in this study are efficient at perturbing lipid membranes, which correlates with their remarkable capacity to transport oligonucleotides into cells. The improved and distinct capacities to escape from endosomal vesicles can be the result of their different structures and hydrophobicity. These findings extend the knowledge of the variables that condition intracellular Cell-penetrating peptide mediated transport of nucleic acids, which ultimately translates into a small step towards successful non-viral gene therapy.
author Ferreira Vasconcelos, Luis Daniel
author_facet Ferreira Vasconcelos, Luis Daniel
author_sort Ferreira Vasconcelos, Luis Daniel
title Oligonucleotide Complexes with Cell-Penetrating Peptides : Structure, Binding, Translocation and Flux in Lipid Membranes
title_short Oligonucleotide Complexes with Cell-Penetrating Peptides : Structure, Binding, Translocation and Flux in Lipid Membranes
title_full Oligonucleotide Complexes with Cell-Penetrating Peptides : Structure, Binding, Translocation and Flux in Lipid Membranes
title_fullStr Oligonucleotide Complexes with Cell-Penetrating Peptides : Structure, Binding, Translocation and Flux in Lipid Membranes
title_full_unstemmed Oligonucleotide Complexes with Cell-Penetrating Peptides : Structure, Binding, Translocation and Flux in Lipid Membranes
title_sort oligonucleotide complexes with cell-penetrating peptides : structure, binding, translocation and flux in lipid membranes
publisher Stockholms universitet, Institutionen för neurokemi
publishDate 2014
url http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-109299
http://nbn-resolving.de/urn:isbn:978-91-7649-029-7
work_keys_str_mv AT ferreiravasconcelosluisdaniel oligonucleotidecomplexeswithcellpenetratingpeptidesstructurebindingtranslocationandfluxinlipidmembranes
_version_ 1716732301960806400