Tomographic views of the middle atmosphere from a satellite platform
The middle atmosphere is a very important part of the Earth system. Until recently, we did not realize the importance of the structure of this vaporous shell and of the fundamental role it plays in both creating and sustaining life on the planet. Thanks to the development and improvement of new soun...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Stockholms universitet, Meteorologiska institutionen (MISU)
2014
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-106833 http://nbn-resolving.de/urn:isbn:978-91-7447-974-4 |
Summary: | The middle atmosphere is a very important part of the Earth system. Until recently, we did not realize the importance of the structure of this vaporous shell and of the fundamental role it plays in both creating and sustaining life on the planet. Thanks to the development and improvement of new sounding methods and techniques, our knowledge of the composition of the atmosphere has become more detailed than ever before. We have also learned how to reveal complex interactions between different species and how they react to the incoming solar radiation. The middle part of the Earth’s atmosphere serves as a host for the Polar Mesospheric Clouds. These clouds consist of a thin layer of water-ice particles, only exsisting during the summer months and only close to the poles. There are indications that the occurrence of Polar Mesospheric Clouds may be linked to climate change. It has been pointed out that the first sightings coincide with the industrial revolution. Satellite observations have shown that Polar Mesospheric Clouds have become brighter and possibly more widely distributed during the 20th century. The clouds might therefore be suited as indicators of the variability of the climate - a good reason for studying this night-shimmering phenomena. The clouds can also be used as a proxy for middle atmospheric dynamics. In order to fully utilize Polar Mesospheric Clouds as tracers for atmospheric variability and dynamics, we need to better understand their local properties. The Optical Spectrograph and Infra-Red Imager System (OSIRIS) is one of two instruments installed on the Odin satellite. The optical spectrograph of this instrument observes sunlight scattered by the atmosphere and thus the Polar Mesospheric Clouds. This thesis deals with a tomographic technique that can reconstruct both horizontal and vertical structures of the clouds by using observations from various angles of the atmospheric region. From this information, microphysical properties such as particle sizes and number densities are obtained. The tomographic technique presented in this thesis also provides a basis for a new satellite concept - MATS. The idea behind the MATS satellite mission is to analyze wave activity in the atmosphere over a wide range of spatial and temporal scales, based on the scientific heritage from Odin/OSIRIS and the tomographic algorithms presented in this thesis. === <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper3: Submitted. Paper 4: Manuscript.</p> |
---|