Energy Efficiency in Shopping Malls : Some Aspects Based on a Case Study
The building sector accounts for approximately 40 percent of our energy use. To reach existing environmental targets energy use will have to be reduced in all building types. At the European level, the main legislative instrument for improving the energy efficiency of the building stock is the Energ...
Main Author: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
Chalmers, Gothenburg, Sweden
2014
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-30079 http://nbn-resolving.de/urn:isbn:978-91-7597-081-3 |
Summary: | The building sector accounts for approximately 40 percent of our energy use. To reach existing environmental targets energy use will have to be reduced in all building types. At the European level, the main legislative instrument for improving the energy efficiency of the building stock is the Energy Performance of Buildings Directive (EPBD). The EPBD requires all member states to implement the directive in the building code and it also requires energy declarations to be performed at the building level. The first objective of this thesis is to describe energy use in shopping malls in Sweden and to suggest how this energy use can be reduced. The second objective is to determine whether current regulatory requirements are effective in promoting energy efficiency measures in Swedish shopping malls. Only limited background information was found from national energy statistics and scientific papers that deal specifically with energy use in shopping malls. The data available are difficult to analyse and compare due to inconsistencies in terminology regarding nomenclature and system boundaries. An improved terminology is presented in the thesis, with a distinction between organisationally and functionally divided energy, to facilitate future studies. Furthermore, when it comes to designing shopping malls and evaluating their energy use, correct input data are required. For calculations and simulations of energy demand in buildings, internal and external load patterns are important input data. The thesis provides occupancy, lighting and infiltration load data for shopping malls. Energy use in one shopping mall was investigated in detail and resulted in a validated calculation model for the prediction of energy use. To develop the calculation model an iterative empirical-theoretical methodology was used. It involved cross-checking measured data, assumptions related to operational and technical data, and model calculation results. The calculation model was then used for a more general analysis of energy efficiency measures and an evaluation of regulatory requirements. The thesis illustrates how the current building code and energy declarations are implemented in shopping malls today together with associated strengths and weaknesses. |
---|