Tilting and Relative Theories in Subcategories

We show that, over an artin algebra, the tilting functor preserves (co)tilting modules in the subcategories associated to the functor. We also give a sufficient condition for the category of modules of finite projective dimension over an artin algebra to be contravariantly finite in the category of...

Full description

Bibliographic Details
Main Author: Mohammed, Soud
Format: Doctoral Thesis
Language:English
Published: Norges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk 2008
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1825
http://nbn-resolving.de/urn:isbn:978-82-471-6681-9
id ndltd-UPSALLA1-oai-DiVA.org-ntnu-1825
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-ntnu-18252013-01-08T13:04:37ZTilting and Relative Theories in SubcategoriesengMohammed, SoudNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikkFakultet for informasjonsteknologi, matematikk og elektroteknikk2008Representation theory of algebrasMATHEMATICSMATEMATIKWe show that, over an artin algebra, the tilting functor preserves (co)tilting modules in the subcategories associated to the functor. We also give a sufficient condition for the category of modules of finite projective dimension over an artin algebra to be contravariantly finite in the category of all finitely generated modules over the artin algebra. This is a sufficient condition for the finitistic dimension of the artin algebra to be finite [3]. We also develop relative theory and in certain subcategories of the module category over an artin algebra in the sense of [10,11]. We use the theory to generalize the main result of [26] Doctoral thesis, monographinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1825urn:isbn:978-82-471-6681-9Doktoravhandlinger ved NTNU, 1503-8181 ; 2008:39application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Representation theory of algebras
MATHEMATICS
MATEMATIK
spellingShingle Representation theory of algebras
MATHEMATICS
MATEMATIK
Mohammed, Soud
Tilting and Relative Theories in Subcategories
description We show that, over an artin algebra, the tilting functor preserves (co)tilting modules in the subcategories associated to the functor. We also give a sufficient condition for the category of modules of finite projective dimension over an artin algebra to be contravariantly finite in the category of all finitely generated modules over the artin algebra. This is a sufficient condition for the finitistic dimension of the artin algebra to be finite [3]. We also develop relative theory and in certain subcategories of the module category over an artin algebra in the sense of [10,11]. We use the theory to generalize the main result of [26]
author Mohammed, Soud
author_facet Mohammed, Soud
author_sort Mohammed, Soud
title Tilting and Relative Theories in Subcategories
title_short Tilting and Relative Theories in Subcategories
title_full Tilting and Relative Theories in Subcategories
title_fullStr Tilting and Relative Theories in Subcategories
title_full_unstemmed Tilting and Relative Theories in Subcategories
title_sort tilting and relative theories in subcategories
publisher Norges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk
publishDate 2008
url http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1825
http://nbn-resolving.de/urn:isbn:978-82-471-6681-9
work_keys_str_mv AT mohammedsoud tiltingandrelativetheoriesinsubcategories
_version_ 1716507985825497088