Exact Statistical Inference in Nonhomogeneous Poisson Processes, based on Simulation

We present a general approach for Monte Carlo computation of conditional expectations of the form E[(T)|S = s] given a sufficient statistic S. The idea of the method was first introduced by Lillegård and Engen [4], and has been further developed by Lindqvist and Taraldsen [7, 8, 9]. If a certain piv...

Full description

Bibliographic Details
Main Author: Rannestad, Bjarte
Format: Others
Language:English
Published: Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag 2007
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10775
Description
Summary:We present a general approach for Monte Carlo computation of conditional expectations of the form E[(T)|S = s] given a sufficient statistic S. The idea of the method was first introduced by Lillegård and Engen [4], and has been further developed by Lindqvist and Taraldsen [7, 8, 9]. If a certain pivotal structure is satised in our model, the simulation could be done by direct sampling from the conditional distribution, by a simple parameter adjustment of the original statistical model. In general it is shown by Lindqvist and Taraldsen [7, 8] that a weighted sampling scheme needs to be used. The method is in particular applied to the nonhomogeneous Poisson process, in order to develop exact goodness-of-fit tests for the null hypothesis that a set of observed failure times follow the NHPP of a specic parametric form. In addition exact confidence intervals for unknown parameters in the NHPP model are considered [6]. Different test statistics W=W(T) designed in order to reveal departure from the null model are presented [1, 10, 11]. By the method given in the following, the conditional expectation of these test statistics could be simulated in the absence of the pivotal structure mentioned above. This extends results given in [10, 11], and answers a question stated in [1]. We present a power comparison of 5 of the test statistics considered under the nullhypothesis that a set of observed failure times are from a NHPP with log linear intensity, under the alternative hypothesis of power law intensity. Finally a convergence comparison of the method presented here and an alternative approach of Gibbs sampling is given.