Simulation, Measurement and Analysis of the Response of Electron- and Position Sensitive Detector
Different methods exist in relation to probing and investigating thephysical and structural composition of materials especially detectors whoseusage have become an integral part of radiation detection. The use of thescanning electron microscopy is just one of such exploratory methods. Thistechnique...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
Mittuniversitetet, Institutionen för informationsteknologi och medier
2012
|
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-17239 http://nbn-resolving.de/urn:isbn:978-91-87103-38-4 |
Summary: | Different methods exist in relation to probing and investigating thephysical and structural composition of materials especially detectors whoseusage have become an integral part of radiation detection. The use of thescanning electron microscopy is just one of such exploratory methods. Thistechnique uses a focused beam of high-energy electrons to generate a varietyof signals at the surface of the device under investigationThis thesis presents the results derived from signals from electron beamsampleinteractions, revealing information about the different cleanroomfabricated electron detectors used. This information includes the detector’sexternal morphology and texture, surface recombination, fixed oxide chargeand the behavioral characteristic in the form of its position detection accuracyand linearity.An electron detector with a high ionization factor and which has a 10nmSilicon Oxide passivating layer was fabricated. Results from using the scanningelectron microscopy showed that its maximum responsivity wasapproximately 0.25 A/W from a possible 0.27 A/W. In conjunction withsimulations, results also showed the significance of the effect of the minoritycarrier's surface recombination velocity on the responsivity of the detectors.In addition, measurements were conducted to ascertain the performancevariance of these electron detectors with respect to their surfacerecombination velocity and fixed oxide charge when the doping profile isaltered.By incorporating special features on a fabricated duo-lateral positionsensitive detector (PSD), a position sensing resolution of the PSD using theelectron microscopic method was also evaluated. The evaluation showed avery high linearity over two-dimensions for 77% of the PSD’s active area.The results in this thesis offer a significant improvement in electrondetectors for applications such as gas chromatography detection of traceamounts of chemical compounds in a sample as well as applications involvingposition sensitive detection. |
---|