Parallell beräkning av omslutande volymer

This paper presents techniques for speeding up commonly used algorithms forbounding volume (BV) computation, such as the AABB, sphere and k-DOP. Byexploiting the possibilities of parallelismin modern processors, the result exceedsthe expected theoretical result. The methods focus on data-level-paral...

Full description

Bibliographic Details
Main Authors: Winberg, Olov, Karlsson, Mattias
Format: Others
Language:Swedish
Published: Mälardalens högskola, Akademin för innovation, design och teknik 2010
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-9439
Description
Summary:This paper presents techniques for speeding up commonly used algorithms forbounding volume (BV) computation, such as the AABB, sphere and k-DOP. Byexploiting the possibilities of parallelismin modern processors, the result exceedsthe expected theoretical result. The methods focus on data-level-parallelism(DLP) using Intel’s SSE instructions, for operations on 4 parallel independentsingle precision floating point values, with a theoretical speed-up factor of 4 ondata throughput. Still, a speed-up between 7–9 are shown in the computation ofAABBs and k-DOPs. For the computation of tight fitting spheres the speed-upfactor halts at approximately 4 due to a limiting data dependency. In addition,further parallelization by multithreading algorithms on multi-core CPUs showsspeed-up factors of 14 on 2 cores and reaching 25 on 4 cores, compared to nonparallel algorithms.