Jämförelse av värmekällor : Byte av värmekälla i ett småhus ur ett energi-, ekonomi- och klimatperspektiv

Purpose: The aim of this study is to present the economic, environmental impact, and energy saving benefits of replacing an electric boiler to a bedrock heat pump or district heating. Furthermore, the impact of additional insulation will also be presented. Method: The technical, environmental, and e...

Full description

Bibliographic Details
Main Authors: Goblirsch, Amanda, Izat, Banaz, Österblad Rintanen, Melinda
Format: Others
Language:Swedish
Published: Mälardalens högskola, Akademin för ekonomi, samhälle och teknik 2021
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55435
id ndltd-UPSALLA1-oai-DiVA.org-mdh-55435
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-mdh-554352021-07-14T05:27:11ZJämförelse av värmekällor : Byte av värmekälla i ett småhus ur ett energi-, ekonomi- och klimatperspektivsweGoblirsch, AmandaIzat, BanazÖsterblad Rintanen, MelindaMälardalens högskola, Akademin för ekonomi, samhälle och teknik2021Heat sourcedistrict heatingbed rock heat pumpground source heat pumpelectric boilerair to air heat pumpenergy savingenvironmenteconomyAktiv uppvärmningbergvärmeekonomielpannaenergifjärrvärmeklimatkoldioxidekvivalenterluft-/luftvärmepumptilläggsisoleringvärmekällaCivil EngineeringSamhällsbyggnadsteknikBuilding TechnologiesHusbyggnadPurpose: The aim of this study is to present the economic, environmental impact, and energy saving benefits of replacing an electric boiler to a bedrock heat pump or district heating. Furthermore, the impact of additional insulation will also be presented. Method: The technical, environmental, and economical aspects of the various heat sources in this study are gathered through websites and reports from agencies, industry organisations and corporations. A case study on a family house built in 1971, heated with a combination of electric boiler and air-to-air heat pump has been made. The study investigates the impact of replacing the existing heat sources with newer and better alternatives along with additional insulation. Results: The results present the energy demand for active heating, economic analysis, environmental impact, and the impact of additional insulation. Moreover, a comparison between the heat sources and the additional insulation is presented to show the difference between them. The case study objects demand for active heating includes passive heating, heat losses through the building envelope, heat losses due to ventilation. With all these factors combined, the family house has an annual active heating demand of 11 700 kWh. The energy consumption of the electric boiler combined with air-to-air heat pump (COP 4) have an annual consumption of 7 500 kWh. The required energy from the district heating goes up to 11 700 kWh and the bedrock heat pump (COP 3) have the lowest energy consumption of 3 900 kWh. However, the amount of electricity needed is 400 kWh for district heating compared to the other alternatives that require 7 500 kWh and 3 900 kWh. For the economic aspects, the installation and operating costs for the electric boiler combined with the air-to-air heat pump, district heating and the bedrock heat pump are concluded. This shows that, on one hand the bedrock heat pump is the most expensive heat source to install but on the other hand, the cheapest to operate. Furthermore, this study compares the emissions of carbon dioxide equivalents from the production of district heating and electric energy. Due to the clean electric energy in Sweden, district heating has the highest negative impact on the greenhouse effect as it uses energy resources that have high emission of carbon dioxide equivalents. The environmental impact of the electric boiler, air-to-air heat pump and the bedrock heat pump vary depending on the energy source used to generate electricity and can in the worst case be higher than for district heating. New values with the additional insulation suggest that the improved building envelope will have a positive impact on the operation costs, energy saving and emissions. As an example, the demand for active heating can be reduced with up to 30%. Conclusions: The conclusion is that the comparison of heat sources contains many uncertain variables. Consequently, the result of this study does most likely not apply directly to other study objects. The results may vary if, for example, the geographical location or electricity agreement is changed. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55435application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language Swedish
format Others
sources NDLTD
topic Heat source
district heating
bed rock heat pump
ground source heat pump
electric boiler
air to air heat pump
energy saving
environment
economy
Aktiv uppvärmning
bergvärme
ekonomi
elpanna
energi
fjärrvärme
klimat
koldioxidekvivalenter
luft-/luftvärmepump
tilläggsisolering
värmekälla
Civil Engineering
Samhällsbyggnadsteknik
Building Technologies
Husbyggnad
spellingShingle Heat source
district heating
bed rock heat pump
ground source heat pump
electric boiler
air to air heat pump
energy saving
environment
economy
Aktiv uppvärmning
bergvärme
ekonomi
elpanna
energi
fjärrvärme
klimat
koldioxidekvivalenter
luft-/luftvärmepump
tilläggsisolering
värmekälla
Civil Engineering
Samhällsbyggnadsteknik
Building Technologies
Husbyggnad
Goblirsch, Amanda
Izat, Banaz
Österblad Rintanen, Melinda
Jämförelse av värmekällor : Byte av värmekälla i ett småhus ur ett energi-, ekonomi- och klimatperspektiv
description Purpose: The aim of this study is to present the economic, environmental impact, and energy saving benefits of replacing an electric boiler to a bedrock heat pump or district heating. Furthermore, the impact of additional insulation will also be presented. Method: The technical, environmental, and economical aspects of the various heat sources in this study are gathered through websites and reports from agencies, industry organisations and corporations. A case study on a family house built in 1971, heated with a combination of electric boiler and air-to-air heat pump has been made. The study investigates the impact of replacing the existing heat sources with newer and better alternatives along with additional insulation. Results: The results present the energy demand for active heating, economic analysis, environmental impact, and the impact of additional insulation. Moreover, a comparison between the heat sources and the additional insulation is presented to show the difference between them. The case study objects demand for active heating includes passive heating, heat losses through the building envelope, heat losses due to ventilation. With all these factors combined, the family house has an annual active heating demand of 11 700 kWh. The energy consumption of the electric boiler combined with air-to-air heat pump (COP 4) have an annual consumption of 7 500 kWh. The required energy from the district heating goes up to 11 700 kWh and the bedrock heat pump (COP 3) have the lowest energy consumption of 3 900 kWh. However, the amount of electricity needed is 400 kWh for district heating compared to the other alternatives that require 7 500 kWh and 3 900 kWh. For the economic aspects, the installation and operating costs for the electric boiler combined with the air-to-air heat pump, district heating and the bedrock heat pump are concluded. This shows that, on one hand the bedrock heat pump is the most expensive heat source to install but on the other hand, the cheapest to operate. Furthermore, this study compares the emissions of carbon dioxide equivalents from the production of district heating and electric energy. Due to the clean electric energy in Sweden, district heating has the highest negative impact on the greenhouse effect as it uses energy resources that have high emission of carbon dioxide equivalents. The environmental impact of the electric boiler, air-to-air heat pump and the bedrock heat pump vary depending on the energy source used to generate electricity and can in the worst case be higher than for district heating. New values with the additional insulation suggest that the improved building envelope will have a positive impact on the operation costs, energy saving and emissions. As an example, the demand for active heating can be reduced with up to 30%. Conclusions: The conclusion is that the comparison of heat sources contains many uncertain variables. Consequently, the result of this study does most likely not apply directly to other study objects. The results may vary if, for example, the geographical location or electricity agreement is changed.
author Goblirsch, Amanda
Izat, Banaz
Österblad Rintanen, Melinda
author_facet Goblirsch, Amanda
Izat, Banaz
Österblad Rintanen, Melinda
author_sort Goblirsch, Amanda
title Jämförelse av värmekällor : Byte av värmekälla i ett småhus ur ett energi-, ekonomi- och klimatperspektiv
title_short Jämförelse av värmekällor : Byte av värmekälla i ett småhus ur ett energi-, ekonomi- och klimatperspektiv
title_full Jämförelse av värmekällor : Byte av värmekälla i ett småhus ur ett energi-, ekonomi- och klimatperspektiv
title_fullStr Jämförelse av värmekällor : Byte av värmekälla i ett småhus ur ett energi-, ekonomi- och klimatperspektiv
title_full_unstemmed Jämförelse av värmekällor : Byte av värmekälla i ett småhus ur ett energi-, ekonomi- och klimatperspektiv
title_sort jämförelse av värmekällor : byte av värmekälla i ett småhus ur ett energi-, ekonomi- och klimatperspektiv
publisher Mälardalens högskola, Akademin för ekonomi, samhälle och teknik
publishDate 2021
url http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55435
work_keys_str_mv AT goblirschamanda jamforelseavvarmekallorbyteavvarmekallaiettsmahusurettenergiekonomiochklimatperspektiv
AT izatbanaz jamforelseavvarmekallorbyteavvarmekallaiettsmahusurettenergiekonomiochklimatperspektiv
AT osterbladrintanenmelinda jamforelseavvarmekallorbyteavvarmekallaiettsmahusurettenergiekonomiochklimatperspektiv
_version_ 1719416982824026112