Summary: | The purpose of this study is to analyse how a battery energy storage system (BESS) can support the frequency and voltage stability for an islanded microgrid containing a hydropower plant. Two different microgrids, both situated in Sweden, are evaluated. Modelling and dynamic simulations are conducted in the PowerFactory tool. The result shows that both the frequency and the voltage control can be improved with the BESS. However, with the allowed limit of ± 1 Hz, not all simulated scenarios including a BESS meets the requirement. A large difference between the BESS and generator capacity might be a possible cause for this. By dividing the larger loads so that smaller loads are attained, the frequency deviation might be reduced. Furthermore, by adjusting the systems PID-parameters according to the island mode operation, faster regulation can be attained. The system operates according to the Master slave control strategy, with the hydropower being the master unit with voltage control and the BESS being a slave unit with PQ control. The ability to operate an islanded microgrid can ensure the supply of electricity to inhabitants and vital functions in society. By utilizing a BESS for increasing electric stability, emission of CO2 is indirectly mitigated. As cost for BESS are expected to decrease rapidly, they will be accessible for utilization all over the world.
|