Implementering av höghållfast stål i byggbranschen : Analys av hur höghållfasta stålkonstruktioner kan appliceras för byggnadstekniska verk: fördelar, risker och användningsområden

Purpose: The purpose of this study has been to investigate the essentials of being able to incorporate high-strength steels (460 MPa and beyond) for structural elements in buildings. As of late, structural steels with a yield point of 355 MPa have been considered standard and have been for the past...

Full description

Bibliographic Details
Main Authors: Mansour, Masis, Frid, Alexander, Bakr, Souzan
Format: Others
Language:Swedish
Published: Mälardalens högskola, Akademin för ekonomi, samhälle och teknik 2020
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-49352
id ndltd-UPSALLA1-oai-DiVA.org-mdh-49352
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-mdh-493522021-12-23T05:46:26ZImplementering av höghållfast stål i byggbranschen : Analys av hur höghållfasta stålkonstruktioner kan appliceras för byggnadstekniska verk: fördelar, risker och användningsområdensweMansour, MasisFrid, AlexanderBakr, SouzanMälardalens högskola, Akademin för ekonomi, samhälle och teknik2020High-strength steelstructural engineeringstructural steelsteel trusssteel columnfatigue designfire behaviorstructural stabilityHöghållfast stålinstabilitetbrandpåverkanutmattningshållfasthetnedböjningfackverksvetsningelektronstrålesvetsningBuilding TechnologiesHusbyggnadPurpose: The purpose of this study has been to investigate the essentials of being able to incorporate high-strength steels (460 MPa and beyond) for structural elements in buildings. As of late, structural steels with a yield point of 355 MPa have been considered standard and have been for the past decade. One of the problems that occur with an increased yield point, is that deflection of structural elements increases, as the Young’s modulus does not increase with increasing yield point. Welding, stability, behavior during fire, and fatigue are also subjects of interest. Method: The study was conducted through several courses of action: a literature review covering the latest research of high-strength steels within the sought-after area of interest, followed by calculations of a truss resting on two columns, being subject to bending moment and compressive force, in both 355 MPa and 700 MPa, in order to review the differences that occur and how they can be counteracted. Lastly, interviews were carried out, where structural engineers gave their thoughts and experiences on the matter at hand. Results: The results show that welding is one of the largest hurdles with being able to utilize high-strength structural steels, though there are newer, more promising methods of welding which can be used, such as electron beam welding. Regarding structural integrity and buckling of structural elements, high-strength steel can be used for trusses, where the structural members are mainly being pulled, opposed to being subject to compressive force. This was shown with the performed calculations, during the interviews, and by the literature overview. Conclusions: The general conclusions of the study is that for welding, further research, education, and training is required for all concerned parts, such as the structural engineers and the on-site welders, which will increase the knowledge regarding how welding of high-strength steels should be performed, but also raise awareness about newer and more modern methods. Fire behavior for high-strength steels are a higher risk factor that should be treated and executed with higher degrees of caution by engineers. Reduction factors for fire affected steel construction elements should be corrected to fit the behavior for high-strength steels as well, as they differ from the current Eurocode 3 for lower class steels. Problems with instability can be counteracted by utilizing the steel in pulled structural members, such as trusses and struts. Lastly, for high-strength steels to be used more widely, structural engineers and manufacturers need to work together for any of the two to profit, as low production rates are costly. Student thesisinfo:eu-repo/semantics/bachelorThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-49352application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language Swedish
format Others
sources NDLTD
topic High-strength steel
structural engineering
structural steel
steel truss
steel column
fatigue design
fire behavior
structural stability
Höghållfast stål
instabilitet
brandpåverkan
utmattningshållfasthet
nedböjning
fackverk
svetsning
elektronstrålesvetsning
Building Technologies
Husbyggnad
spellingShingle High-strength steel
structural engineering
structural steel
steel truss
steel column
fatigue design
fire behavior
structural stability
Höghållfast stål
instabilitet
brandpåverkan
utmattningshållfasthet
nedböjning
fackverk
svetsning
elektronstrålesvetsning
Building Technologies
Husbyggnad
Mansour, Masis
Frid, Alexander
Bakr, Souzan
Implementering av höghållfast stål i byggbranschen : Analys av hur höghållfasta stålkonstruktioner kan appliceras för byggnadstekniska verk: fördelar, risker och användningsområden
description Purpose: The purpose of this study has been to investigate the essentials of being able to incorporate high-strength steels (460 MPa and beyond) for structural elements in buildings. As of late, structural steels with a yield point of 355 MPa have been considered standard and have been for the past decade. One of the problems that occur with an increased yield point, is that deflection of structural elements increases, as the Young’s modulus does not increase with increasing yield point. Welding, stability, behavior during fire, and fatigue are also subjects of interest. Method: The study was conducted through several courses of action: a literature review covering the latest research of high-strength steels within the sought-after area of interest, followed by calculations of a truss resting on two columns, being subject to bending moment and compressive force, in both 355 MPa and 700 MPa, in order to review the differences that occur and how they can be counteracted. Lastly, interviews were carried out, where structural engineers gave their thoughts and experiences on the matter at hand. Results: The results show that welding is one of the largest hurdles with being able to utilize high-strength structural steels, though there are newer, more promising methods of welding which can be used, such as electron beam welding. Regarding structural integrity and buckling of structural elements, high-strength steel can be used for trusses, where the structural members are mainly being pulled, opposed to being subject to compressive force. This was shown with the performed calculations, during the interviews, and by the literature overview. Conclusions: The general conclusions of the study is that for welding, further research, education, and training is required for all concerned parts, such as the structural engineers and the on-site welders, which will increase the knowledge regarding how welding of high-strength steels should be performed, but also raise awareness about newer and more modern methods. Fire behavior for high-strength steels are a higher risk factor that should be treated and executed with higher degrees of caution by engineers. Reduction factors for fire affected steel construction elements should be corrected to fit the behavior for high-strength steels as well, as they differ from the current Eurocode 3 for lower class steels. Problems with instability can be counteracted by utilizing the steel in pulled structural members, such as trusses and struts. Lastly, for high-strength steels to be used more widely, structural engineers and manufacturers need to work together for any of the two to profit, as low production rates are costly.
author Mansour, Masis
Frid, Alexander
Bakr, Souzan
author_facet Mansour, Masis
Frid, Alexander
Bakr, Souzan
author_sort Mansour, Masis
title Implementering av höghållfast stål i byggbranschen : Analys av hur höghållfasta stålkonstruktioner kan appliceras för byggnadstekniska verk: fördelar, risker och användningsområden
title_short Implementering av höghållfast stål i byggbranschen : Analys av hur höghållfasta stålkonstruktioner kan appliceras för byggnadstekniska verk: fördelar, risker och användningsområden
title_full Implementering av höghållfast stål i byggbranschen : Analys av hur höghållfasta stålkonstruktioner kan appliceras för byggnadstekniska verk: fördelar, risker och användningsområden
title_fullStr Implementering av höghållfast stål i byggbranschen : Analys av hur höghållfasta stålkonstruktioner kan appliceras för byggnadstekniska verk: fördelar, risker och användningsområden
title_full_unstemmed Implementering av höghållfast stål i byggbranschen : Analys av hur höghållfasta stålkonstruktioner kan appliceras för byggnadstekniska verk: fördelar, risker och användningsområden
title_sort implementering av höghållfast stål i byggbranschen : analys av hur höghållfasta stålkonstruktioner kan appliceras för byggnadstekniska verk: fördelar, risker och användningsområden
publisher Mälardalens högskola, Akademin för ekonomi, samhälle och teknik
publishDate 2020
url http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-49352
work_keys_str_mv AT mansourmasis implementeringavhoghallfaststalibyggbranschenanalysavhurhoghallfastastalkonstruktionerkanapplicerasforbyggnadstekniskaverkfordelarriskerochanvandningsomraden
AT fridalexander implementeringavhoghallfaststalibyggbranschenanalysavhurhoghallfastastalkonstruktionerkanapplicerasforbyggnadstekniskaverkfordelarriskerochanvandningsomraden
AT bakrsouzan implementeringavhoghallfaststalibyggbranschenanalysavhurhoghallfastastalkonstruktionerkanapplicerasforbyggnadstekniskaverkfordelarriskerochanvandningsomraden
_version_ 1723965628976463872