Investigating techniques for improving accuracy and limiting overfitting for YOLO and real-time object detection on iOS
I detta arbete genomförs utvecklingen av ett realtids objektdetekteringssystem för iOS. För detta ändamål används YOLO, en ett-stegs objektdetekterare och ett s.k. ihoplänkat neuralt nätverk vilket åstadkommer betydligt bättre prestanda än övriga realtidsdetek- terare i termer av hastigh...
Main Author: | Güven, Jakup |
---|---|
Format: | Others |
Language: | English |
Published: |
Malmö universitet, Fakulteten för teknik och samhälle (TS)
2019
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-19999 |
Similar Items
-
Dog Face Detection Using YOLO Network
by: Alzbeta Tureckova, et al.
Published: (2020-12-01) -
Eagle-YOLO: An Eagle-Inspired YOLO for Object Detection in Unmanned Aerial Vehicles Scenarios
by: Liao, L., et al.
Published: (2023) -
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
by: Ismael Essop, et al.
Published: (2021-02-01) -
An Efficient Video Coding System With an Adaptive Overfitted Multi-Scale Attention Network
by: Gang He, et al.
Published: (2021-01-01) -
A Full Featured Configurable Accelerator for Object Detection With YOLO
by: Daniel Pestana, et al.
Published: (2021-01-01)